159 resultados para slope failure
Resumo:
In patients with uremia, intact parathyroid hormone (PTH) measurement appears to overestimate the biologically active hormone in circulation. The recent description of the accumulation in these patients of a non-intact PTH form measured by the standard immunometric assays, re-opened the question. In this study we submitted serum samples from 7 patients with primary hyperparathyroidism (PHP) and from 10 patients with hyperparathyroidism secondary to chronic renal failure (SHP) to preparative HPLC in order to discriminate the molecular forms measured by our currently used immunofluorometric assay for intact PTH. The elution profile obtained with the HPLC system showed two clearly defined peaks, the first one corresponding to a lower molecular weight form, and the second to the intact PTH (1-84) form. In patients with SHP the area under the curve for the first peak (mean 29.5%, range 20.6 to 40.4%) was significantly greater than that observed for patients with PHP (mean 15.6%, range 5.6 to 21.9%). This confirms previous studies showing accumulation of molecular forms of slightly lower molecular weight, presumably PTH (7-84), in patients with SHP and, to a lesser extent, in patients with PHP. The real necessity of assays that discriminate between these two molecular forms is debatable.
Resumo:
The aim of the present study was to identify the risk factors for ovarian failure in patients with systemic lupus erythematosus. Seventy-one women aged 17 to 45 years with systemic lupus erythematosus were studied. Patients were interviewed and their medical records reviewed. Demographic characteristics, clinical and serologic profiles, and menstrual and obstetric histories were recorded. Disease activity was measured by the systemic lupus erythematosus disease activity index. Serum FSH, LH, estradiol, progesterone, TSH, prolactin, and antimicrosomal and antithyroglobulin antibodies were measured. Patients who developed ovarian failure were compared to those who did not. Ovarian failure occurred in 11 patients (15.5%) and nine had premature menopause (11.3%). Cyclophosphamide administration and older patient age were found to be associated with ovarian failure. The cumulative cyclophosphamide dose was significantly higher in patients with ovarian failure than in those without this condition (18.9 vs 9.1 g; P = 0.04). The relative risk for ovarian failure in patients with cumulative cyclophosphamide dose higher than 10 g was 3.2. TSH levels were high in 100% of patients with ovarian failure who had received pulse cyclophosphamide. Ovarian failure, and premature menopause in particular, is common in patients with systemic lupus erythematosus, with the most important risk factors being cyclophosphamide dose and age. Thyroid problems may be another risk factor for ovarian failure in patients with lupus.
Resumo:
The role of linoleic acid in chronic renal failure (CRF) is controversial. In the present study 21 male Wistar rats submitted to 5/6 renal mass reduction (R) and 16 normal controls (C) were fed a supplement (S) or normal (N) linoleic acid diet for 60 days starting 10 days after CRF. As expected, serum creatinine, cholesterol and triglycerides (mean ± SEM) were higher in the CRF groups compared to the C groups (P<0.05). The RS group presented lower cholesterol (84 ± 4 vs 126 ± 13 mg%) and triglyceride (88 ± 9 vs 132 ± 19 mg%) levels compared to the RN group. Proteinuria and kidney weight did not differ between CRF groups. Glomerular area increased 78% in RS and 100% in RN compared to control rats. Glomerular sclerosis index tended to be lower in RS (27%) compared to RN (38%), tubulointerstitial damage was similar between CRF groups (RS = 1.91 ± 0.2 and RN = 2.14 ± 0.3), and mesangial fractional volume increased to the same extent in both CRF groups. The data suggest that a linoleic acid-enriched diet did not protect against the progression of CRF after 60 days.
Resumo:
Infarct-induced heart failure is usually associated with cardiac hypertrophy and decreased ß-adrenergic responsiveness. However, conflicting results have been reported concerning the density of L-type calcium current (I Ca(L)), and the mechanisms underlying the decreased ß-adrenergic inotropic response. We determined I Ca(L) density, cytoplasmic calcium ([Ca2+]i) transients, and the effects of ß-adrenergic stimulation (isoproterenol) in a model of postinfarction heart failure in rats. Left ventricular myocytes were obtained by enzymatic digestion 8-10 weeks after infarction. Electrophysiological recordings were obtained using the patch-clamp technique. [Ca2+]i transients were investigated via fura-2 fluorescence. ß-Adrenergic receptor density was determined by [³H]-dihydroalprenolol binding to left ventricle homogenates. Postinfarction myocytes showed a significant 25% reduction in mean I Ca(L) density (5.7 ± 0.28 vs 7.6 ± 0.32 pA/pF) and a 19% reduction in mean peak [Ca2+]i transients (0.13 ± 0.007 vs 0.16 ± 0.009) compared to sham myocytes. The isoproterenol-stimulated increase in I Ca(L) was significantly smaller in postinfarction myocytes (Emax: 63.6 ± 4.3 vs 123.3 ± 0.9% in sham myocytes), but EC50 was not altered. The isoproterenol-stimulated peak amplitude of [Ca2+]i transients was also blunted in postinfarction myocytes. Adenylate cyclase activation through forskolin produced similar I Ca(L) increases in both groups. ß-Adrenergic receptor density was significantly reduced in homogenates from infarcted hearts (Bmax: 93.89 ± 20.22 vs 271.5 ± 31.43 fmol/mg protein in sham myocytes), while Kd values were similar. We conclude that postinfarction myocytes from large infarcts display reduced I Ca(L) density and peak [Ca2+]i transients. The response to ß-adrenergic stimulation was also reduced and was probably related to ß-adrenergic receptor down-regulation and not to changes in adenylate cyclase activity.
Resumo:
The concomitant use of angiotensin-converting enzyme inhibitors and aspirin may cause pharmacological antagonism. Hence we examined the effect of aspirin on the neurohormonal function and hemodynamic response to captopril in heart failure patients. Between April 1999 and August 2000, 40 patients were randomized into four equal groups: 1) captopril, 2) aspirin, 3) captopril-aspirin: captopril was given alone on the first day, followed by aspirin on the remaining days, and 4) aspirin-captopril: aspirin was given alone on the first day, followed by captopril on the remaining days. Hemodynamic, norepinephrine and prostaglandin measurements were performed pre- and post-medication for 4 days. Captopril (50 mg) was given orally every 8 h and 300 mg aspirin was given on the first day, and 100 mg/day thereafter. In the captopril group and only on the first day of captopril-aspirin, captopril produced increases in cardiac index (2.1 ± 0.6 to 2.5 ± 0.5 l min-1 m-2, P<0.0001), and reduced peripheral vascular resistance (1980 ± 580 to 1545 ± 506 dyn s-1 cm-5/m², P<0.0001) and pulmonary wedge pressure (20 ± 4 to 15 ± 4 mmHg, P<0.0001). In contrast, aspirin alone or associated with captopril showed no significant hemodynamic changes. Norepinephrine decreased (P<0.02) only in the captopril group. Prostaglandin levels did not differ significantly among groups. Thus, aspirin compromises the short-term hemodynamic and neurohormonal effects of captopril in patients with acute decompensated heart failure.
Resumo:
Pancreatic ß cell function and insulin sensitivity, analyzed by the homeostasis model assessment, before and after 24 weeks of insulin therapy were studied and correlated with the presence of autoantibodies against ß cells (islet cell and anti-glutamic acid decarboxylase antibodies), in a group of 18 Brazilian lean adult non-insulin-dependent diabetes mellitus (NIDDM) patients with oral hypoglycemic agent failure (OHAF). Median fasting plasma glucose before and after insulin treatment was 19.1 and 8.5 mmol/l, respectively (P < 0.001); median HbA1c was 11.7% before vs 7.2% after insulin treatment (P < 0.001). Forty-four percent of the patients were positive (Ab+) to at least one autoantibody. Fasting C-peptide levels were lower in Ab+ than Ab- patients, both before (Ab+: 0.16 ± 0.09 vs Ab-: 0.41 ± 0.35 nmol/l, P < 0.003) and after insulin treatment (Ab+: 0.22 ± 0.13 vs Ab-: 0.44 ± 0.24 nmol/l, P < 0.03). Improvement of Hß was seen in Ab- (median before: 7.3 vs after insulin therapy: 33.4%, P = 0.003) but not in Ab+ patients (median before: 6.6 vs after insulin therapy: 20.9%). These results show that the OHAF observed in the 18 NIDDM patients studied was due mainly to two major causes: autoantibodies and ß cell desensitization. Autoantibodies against ß cells could account for 44% of OHAF, but Ab- patients may still present ß cell function recovery, mainly after a period of ß cell rest with insulin therapy. However, the effects of ß cell function recovery on the restoration of the response to oral hypoglycemic agents need to be determined.
Resumo:
To determine if radiocontrast impairs vascular relaxation of the renal artery, segments (4-5 mm in length) of canine renal artery were suspended in vitro in organ chambers to measure isometric force (95% O2/5% CO2, at 37ºC). Arterial segments with and without endothelium were placed at the optimal point of their length-tension relation and incubated with 10 µM indomethacin to prevent synthesis of endogenous prostanoids. The presence of nonionic radiocontrast (iohexol, Omnipaque 350, 1 ml in 25 ml control solution, 4% (v/v)) did not alter endothelium-dependent relaxation to acetylcholine in rings precontracted with both norepinephrine and prostaglandin F2alpha (N = 6). When the rings were precontracted with prostaglandin F2alpha, the presence of ionic contrast did not inhibit the relaxation of the arteries. However, in canine renal arteries contracted with norepinephrine, the presence of ionic radiocontrast (diatrizoate meglumine and diatrizoate sodium, MD-76, 1 ml in 25 ml control solution, 4% (v/v)) inhibited relaxation in response to acetylcholine, sodium nitroprusside (N = 6 in each group), and isoproterenol (N = 5; P < 0.05). Rings were relaxed less than 50% of norepinephrine contraction. Following removal of the contrast, vascular relaxation in response to the agonists returned to normal. These results indicate that ionic radiocontrast nonspecifically inhibits vasodilation (both cAMP-mediated and cGMP-mediated) of canine renal arteries contracted with norepinephrine. This reversible impairment of vasodilation could inhibit normal renal perfusion and act as a mechanism of renal failure following radiocontrast infusion. In the adopted experimental protocol the isoproterenol-induced relaxation of renal arteries precontracted with norepinephrine was more affected, suggesting a pivotal role of the cAMP system.
Resumo:
The objective of the present study was to determine the relationship between nitric oxide synthases (NOS) and heart failure in cardiac tissue from patients with and without cardiac decompensation. Right atrial tissue was excised from patients with coronary artery disease (CAD) and left ventricular ejection fraction (LVEF) <35% (N = 10), and from patients with CAD and LVEF >60% (N = 10) during cardiac surgery. NOS activity was measured by the conversion of L-[H³]-arginine to L-[H³]-citrulline. Gene expression was quantified by the competitive reverse transcription-polymerase chain reaction. Both endothelial NOS (eNOS) activity and expression were significantly reduced in failing hearts compared to non-failing hearts: 0.36 ± 0.18 vs 1.51 ± 0.31 pmol mg-1 min-1 (P < 0.0001) and 0.37 ± 0.08 vs 0.78 ± 0.09 relative cDNA absorbance at 320 nm (P < 0.0001), respectively. In contrast, inducible NOS (iNOS) activity and expression were significantly higher in failing hearts than in non-failing hearts: 4.00 ± 0.90 vs 1.54 ± 0.65 pmol mg-1 min-1 (P < 0.0001) and 2.19 ± 0.27 vs 1.43 ± 0.13 cDNA absorbance at 320 nm (P < 0.0001), respectively. We conclude that heart failure down-regulates both eNOS activity and expression in cardiac tissue from patients with LVEF <35%. In contrast, iNOS activity and expression are increased in failing hearts and may represent an alternative mechanism for nitric oxide production in heart failure due to ischemic disease.
Resumo:
The relevance of the relationship between cardiac disease and depressive symptoms is well established. White matter hyperintensity, a bright signal area in the brain on T2-weighted magnetic resonance imaging scans, has been separately associated with cardiovascular risk factors, cardiac disease and late-life depression. However, no study has directly investigated the association between heart failure, major depressive symptoms and the presence of hyperintensities. Using a visual assessment scale, we have investigated the frequency and severity of white matter hyperintensities identified by magnetic resonance imaging in eight patients with late-life depression and heart failure, ten patients with heart failure without depression, and fourteen healthy elderly volunteers. Since the frontal lobe has been the proposed site for the preferential location of white matter hyperintensities in patients with late-life depression, we focused our investigation specifically on this brain region. Although there were no significant group differences in white matter hyperintensities in the frontal region, a significant direct correlation emerged between the severity of frontal periventricular white matter hyperintensity and scores on the Hamilton scale for depression in the group with heart failure and depression (P = 0.016, controlled for the confounding influence of age). There were no significant findings in any other areas of the brain. This pattern of results adds support to a relationship between cardiovascular risk factors and depressive symptoms, and provides preliminary evidence that the presence of white matter hyperintensities specifically in frontal regions may contribute to the severity of depressive symptoms in cardiac disease.
Resumo:
Ca/calmodulin-dependent protein kinase IIdelta (CaMKIIdelta) is the predominant isoform in the heart. During excitation-contraction coupling (ECC) CaMKII phosphorylates several Ca-handling proteins including ryanodine receptors (RyR), phospholamban, and L-type Ca channels. CaMKII expression and activity have been shown to correlate positively with impaired ejection fraction in the myocardium of patients with heart failure and CaMKII has been proposed to be a possible compensatory mechanism to keep hearts from complete failure. However, in addition to these acute effects on ECC, CaMKII was shown to be involved in hypertrophic signaling, termed excitation-transcription coupling (ETC). Thus, animal models have shown that overexpression of nuclear isoform CaMKIIdeltaB can induce myocyte hypertrophy. Recent study from our laboratory has suggested that transgenic overexpression of the cytosolic isoform CaMKIIdeltaC in mice causes severe heart failure with altered intracellular Ca handling and protein expression leading to reduced sarcoplasmic reticulum (SR) Ca content. Interestingly, the frequency of diastolic spontaneous SR Ca release events (or opening of RyR) was greatly enhanced, demonstrating increased diastolic SR Ca leak. This was attributed to increased CaMKII-dependent RyR phosphorylation, resulting in increased and prolonged openings of RyR since Ca spark frequency could be reduced back to normal levels by CaMKII inhibition. This review focuses on acute and chronic effects of CaMKII in ECC and ETC. In summary, CaMKII overexpression can lead to heart failure and CaMKII-dependent RyR hyperphosphorylation seems to be a novel and important mechanism in ECC due to SR Ca leak which may be important in the pathogenesis of heart failure.
Resumo:
We tested the hypothesis that the inability to increase cardiac output during exercise would explain the decreased rate of oxygen uptake (VO2) in recent onset, ischemia-induced heart failure rats. Nine normal control rats and 6 rats with ischemic heart failure were studied. Myocardial infarction was induced by coronary ligation. VO2 was measured during a ramp protocol test on a treadmill using a metabolic mask. Cardiac output was measured with a flow probe placed around the ascending aorta. Left ventricular end-diastolic pressure was higher in ischemic heart failure rats compared with normal control rats (17 ± 0.4 vs 8 ± 0.8 mmHg, P = 0.0001). Resting cardiac index (CI) tended to be lower in ischemic heart failure rats (P = 0.07). Resting heart rate (HR) and stroke volume index (SVI) did not differ significantly between ischemic heart failure rats and normal control rats. Peak VO2 was lower in ischemic heart failure rats (73.72 ± 7.37 vs 109.02 ± 27.87 mL min-1 kg-1, P = 0.005). The VO2 and CI responses during exercise were significantly lower in ischemic heart failure rats than in normal control rats. The temporal response of SVI, but not of HR, was significantly lower in ischemic heart failure rats than in normal control rats. Peak CI, HR, and SVI were lower in ischemic heart failure rats. The reduction in VO2 response during incremental exercise in an ischemic model of heart failure is due to the decreased cardiac output response, largely caused by depressed stroke volume kinetics.
Resumo:
Treatment with indinavir (IDV), a protease inhibitor, is frequently associated with renal abnormalities. We determined the incidence of renal failure (creatinine clearance <80 mL min-1 1.73 (m²)-1) in HIV patients treated with highly active antiretroviral therapy, including IDV, and investigated the possible mechanisms and risk factors of IDV nephrotoxicity. Thirty-six patients receiving IDV were followed for 3 years. All were assessed for age, body weight, duration of infection, duration of IDV treatment, sulfur-derivative use, total cholesterol, triglycerides, magnesium, sodium, potassium, creatinine, and urinalysis. We also determined renal function in terms of creatinine clearance, urine osmolality and fractional excretion of sodium, potassium, and water. Urinary nitrate (NO3) excretion was measured in 18 IDV-treated patients and compared with that of 8 patients treated with efavirenz, a drug without renal side effects. Sterile leukocyturia occurred in 80.5% of the IDV-treated patients. Creatinine clearance <80 mL min-1 1.73 (m²)-1 was observed in 22 patients (61%) and was associated with low body weight and the use of sulfur-derivatives. These patients also had lower osmolality, lower urine volume and a higher fractional excretion of water compared to the normal renal function group. Urinary NO3 excretion was significantly lower in IDV-treated patients (809 ± 181 µM NO3-/mg creatinine) than in efavirenz-treated patients (2247 ± 648 µM NO3-/mg creatinine, P < 0.01). The lower NO3 excretion suggests that IDV decreases nitric oxide production.
Resumo:
The main function of the cardiac adrenergic system is to regulate cardiac work both in physiologic and pathologic states. A better understanding of this system has permitted the elucidation of its role in the development and progression of heart failure. Regardless of the initial insult, depressed cardiac output results in sympathetic activation. Adrenergic receptors provide a limiting step to this activation and their sustained recruitment in chronic heart failure has proven to be deleterious to the failing heart. This concept has been confirmed by examining the effect of ß-blockers on the progression of heart failure. Studies of adrenergic receptor polymorphisms have recently focused on their impact on the adrenergic system regarding its adaptive mechanisms, susceptibilities and pharmacological responses. In this article, we review the function of the adrenergic system and its maladaptive responses in heart failure. Next, we discuss major adrenergic receptor polymorphisms and their consequences for heart failure risk, progression and prognosis. Finally, we discuss possible therapeutic implications resulting from the understanding of polymorphisms and the identification of individual genetic characteristics.
Resumo:
The present study reports for the first time the incidence of congestive heart failure (CHF) in previously infarcted rats that died spontaneously. Previously, pulmonary (PWC) and hepatic (HWC) water contents were determined in normal rats: 14 control animals were evaluated immediately after sacrifice, 8 placed in a refrigerator for 24 h, and 10 left at room temperature for 24 h. In the infarcted group, 9 rats died before (acute) and 28 died 48 h after (chronic) myocardial infarction. Thirteen chronic animals were submitted only to autopsy (N = 13), whereas PWC and HWC were also determined in the others (N = 15). Seven rats survived 48 h and died during anesthesia. Notably, PWC differed in normal rats: ambient (75.7 ± 1.3%) < control (77.5 ± 0.7%) < refrigerator (79.1 ± 1.4%) and there were no differences with respect to HWC. No clinical signs of CHF (dyspnea, lethargy or foot edema) were observed in infarcted rats before death. PWC was elevated in all chronic and anesthetized rats. HWC was increased in 48% of chronic and in all anesthetized rats. Our data showed that PWC needs to be evaluated before 24 h post mortem and that CHF is the rule in chronic infarcted rats suffering natural death. The congestive syndrome cannot be diagnosed correctly in rats by clinical signs alone, as previously proposed.
Resumo:
The objective of the present study was to assess the incidence, risk factors and outcome of patients who develop acute renal failure (ARF) in intensive care units. In this prospective observational study, 221 patients with a 48-h minimum stay, 18-year-old minimum age and absence of overt acute or chronic renal failure were included. Exclusion criteria were organ donors and renal transplantation patients. ARF was defined as a creatinine level above 1.5 mg/dL. Statistics were performed using Pearsons' chi2 test, Student t-test, and Wilcoxon test. Multivariate analysis was run using all variables with P < 0.1 in the univariate analysis. ARF developed in 19.0% of the patients, with 76.19% resulting in death. Main risk factors (univariate analysis) were: higher intra-operative hydration and bleeding, higher death risk by APACHE II score, logist organ dysfunction system on the first day, mechanical ventilation, shock due to systemic inflammatory response syndrome (SIRS)/sepsis, noradrenaline use, and plasma creatinine and urea levels on admission. Heart rate on admission (OR = 1.023 (1.002-1.044)), male gender (OR = 4.275 (1.340-13642)), shock due to SIRS/sepsis (OR = 8.590 (2.710-27.229)), higher intra-operative hydration (OR = 1.002 (1.000-1004)), and plasma urea on admission (OR = 1.012 (0.980-1044)) remained significant (multivariate analysis). The mortality risk factors (univariate analysis) were shock due to SIRS/sepsis, mechanical ventilation, blood stream infection, potassium and bicarbonate levels. Only potassium levels remained significant (P = 0.037). In conclusion, ARF has a high incidence, morbidity and mortality when it occurs in intensive care unit. There is a very close association with hemodynamic status and multiple organ dysfunction.