123 resultados para relative spatial shift
Resumo:
The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.
Resumo:
This study aimed to establish relationships between maize yield and rainfall on different temporal and spatial scales, in order to provide a basis for crop monitoring and modelling. A 16-year series of maize yield and daily rainfall from 11 municipalities and micro-regions of Rio Grande do Sul State was used. Correlation and regression analyses were used to determine associations between crop yield and rainfall for the entire crop cycle, from tasseling to 30 days after, and from 5 days before tasseling to 40 days after. Close relationships between maize yield and rainfall were found, particularly during the reproductive period (45-day period comprising the flowering and grain filling). Relationships were closer on a regional scale than at smaller scales. Implications of the crop-rainfall relationships for crop modelling are discussed.
Resumo:
The objective of this work was to assess the potential impact of climate change on the spatial distribution of coffee nematodes (races of Meloidogyne incognita) and leaf miner (Leucoptera coffeella), using a Geographic Information System. Assessment of the impacts of climate change on pest infestations and disease epidemics in crops is needed as a basis for revising management practices to minimize crop losses as climatic conditions shift. Future scenarios focused on the decades of the 2020's, 2050's, and 2080's (scenarios A2 and B2) were obtained from five General Circulation Models available on Data Distribution Centre from Intergovernmental Panel on Climate Change. Geographic distribution maps were prepared using models to predict the number of generations of the nematodes and leaf miner. Maps obtained in scenario A2 allowed prediction of an increased infestation of the nematode and of the pest, due to greater number of generations per month, than occurred under the climatological normal from 1961-1990. The number of generations also increased in the B2 scenario, but was lower than in the A2 scenario for both organisms.