171 resultados para organic ointment isotonic saline
Resumo:
Colloid chemical behavior of indole dihydropyrimidines in non-aqueous solvent mixture benzene-methanol of varying composition has been investigated by viscometric measurements at 303K± 0.1. The viscosity of the system increases with the increase in concentration. The Trend Change Point (TCP) values have been determined by intersection of two straight lines, which are found to be dependent on the composition of solvent mixtures. The study confirms that the nature of synthesized compounds agglomerate formed below and above 50% benzene concentration is quite different. The viscometric data have been analyzed in terms of Einstein, Vand, Moulik and Jones-Dole equations. These well known equations have been successfully applied to explain the results of viscosity measurements and the viscometric parameters show that the behavior of compound changes in the proximity of 50% benzene concentration.
Resumo:
Previous studies have demonstrated that volatile organic compounds (VOCs), produced by the yeast Saccharomyces cerevisiae, were able to inhibit the development of phytopathogenic fungi. In this context, the nematicidal potential of the synthetic mixture of VOCs, constituted of alcohols and esters, was evaluated for the control of the root-knot nematode Meloidogyne javanica, which causes losses to crops of high economic value. The fumigation of substrate containing second-stage juveniles with VOCs exhibited nematicidal effect higher than 30% for the lowest concentration tested (33.3 µL g-1 substrate), whereas at 66.6 and 133.3 µL g-1 substrate, the nematode mortality was 100%. The present results stimulate other studies on VOCs for nematode management.
Resumo:
This study aimed at quantifying total organic carbon stocks and its pools in Acrisol under agroforestry systems with six (AFS6) and thirteen years old (AFS13), slash-and-burn agriculture (SBA) and savanna native forest (SNF) in northeastern Brazil. Soil samples were collected at 0-0.05 m, 0.05-0.10 m, 0.10-0.20 m and 0.20-0.40 m depths in the dry and rainy seasons to evaluate total organic carbon (TOC) stocks and labile carbon (LC), fulvic acid fraction (C-FAF), humic acid fraction (C-HAF), humin (C-HF) and microbial biomass carbon (Cmic) contents. Additionally, carbon management index (CMI) was determined. Higher TOC stocks (97.7 and 81.8 Mg ha-1 for the 0-0.40 m depth in the dry and rainy seasons, respectively) and LC, humic substances and Cmic contents were observed in the AFS13 in all the depths. CMI also was higher in the AFS13 (0-0. 05 m: 158 and 86; 0.05-0.10 m: 171 and 67, respectively for the dry and rainy seasons) especially when compared to the SBA (0-0.05 m: 5.6 and 5.4; 0.05-0.10 m: 5.3 and 5.8, respectively for dry and rainy seasons). The agroforestry systems increased soil quality through the conservation of organic matter and can be considered an excellent strategy to assurance sustainability in tropical soil of Northeastern Brazil
Resumo:
ABSTRACTThe objective of this study was to test the hypothesis that biochar, applied with cattle manure, promotes better development of seedlings of Magonia pubescens St. Hil. The experiment was conducted at the State University of Mato Grosso, Nova Xavantina, Brazil, in 2011. We used a completely randomized design, with twelve treatments and three replications. The substrates formed by the higher levels of cattle manure plus biochar (30%) provided better results of height, diameter and aerial biomass. However, the Dickson Quality Index has not confirmed the quality of seedlings in these treatments. We also observed that the doses of biochar (20 and 30%) when added separately to the Latosol, are not efficient for the growth improvement of the seedlings. Based on the present results, we validate the hypothesis that substrates formed with a mixture of cattle manure and biochar are effective to improve the production of seedlings of M. pubescens.
Resumo:
ABSTRACT The soil carbon under Amazonian forests has an important roles in global changing, making information on the soil content and depths of these stocks are considerable interest in efforts to quantify soil carbon emissions to the atmosphere.This study quantified the content and soil organic carbon stock under primary forest up to 2 m depth, at different topographic positions, at Cuieiras Biological Reserve, Manaus/ ZF2, km 34, in the Central Amazon, evaluating the soil attributes that may influence the permanence of soil carbon. Soil samples were collected along a transect of 850 m on topographic gradient Oxisol (plateau), Ultisol (slope) and Spodosol (valley). The stocks of soil carbon were obtained by multiplying the carbon content, soil bulk density and trickiness of soil layers. The watershed was delimited by using STRM and IKONOS images and the carbon contend obtained in the transects was extrapolated as a way to evaluate the potential for carbon stocks in an area of 2678.68 ha. The total SOC was greater in Oxisol followed by Spodosol and Ultisol. It was found direct correlations between the SOC and soil physical attributes. Among the clay soils (Oxisol and Ultisol), the largest stocks of carbon were observed in Oxisol at both the transect (90 to 175.5 Mg C ha-1) as the level of watershed (100.2 to 195.2 Mg C ha-1). The carbon stocks under sandy soil (Spodosol) was greater to clay soils along the transect (160-241 Mg C ha-1) and near them in the Watershed (96.90 to 146.01 Mg C ha-1).
Resumo:
The objective of this research was to evaluate the performance of the aquatic macrophyte Eichhornia crassipes applied in situ in a slaughter house treatment system, located in the west of the Paraná state, Brazil, regarding the nutrients removal and organic matter. Moreover, it aimed to obtain data from the production, management and composting practices of the biomass generated in the system. During 11 months of macrophytes development, physic and chemical parameters were monitored and plant density was controlled by periodical removal of excess biomass, which was weekly monitored and it is expressed in kg of aquatic plant per m² covered area. The degradation of the macrophytes removed from the treatment system was evaluated at the pilot scale in eight composting piles of 0.60 m³ that underwent four different treatments and two repetitions: T1 - water hyacinth (Eichhornia crassipes); T2 - water hyacinth and swine excrement (7:1), T3 - water hyacinth, swine excrement and earth (7:1:0,67), and T4 - water hyacinth, swine excrement and cellulosic gut (7:1:0,67), for a period of 90 days. The results indicated maximum removal efficiencies of 77.2% for COD; 77.8% for BOD, 87.9% for total nitrogen, 47.5% for ammonia nitrogen and 38.9% for total phosphorus for a five-day retention time. For biomass stabilization by composting, considering the C:N ratio as an indicator of compost maturity, it was observed that treatment T4 resulted in the shortest stabilization period (60 days). No difference was verified in the biostabilization rates at 5% level by the F test.
Resumo:
The use of saline water and the reuse of drainage water for irrigation depend on long-term strategies that ensure the sustainability of socio-economic and environmental impacts of agricultural systems. In this study, it was evaluated the effects of irrigation with saline water in the dry season and fresh water in the rainy season on the soil salt accumulation yield of maize and cowpea, in a crop rotation system. The experiment was conducted in the field, using a randomized complete block design, with five replications. The first crop was installed during the dry season of 2007, with maize irrigated with water of different salinities (0.8, 2.2, 3.6 and 5.0 dS m-1). The maize plants were harvested at 90 days after sowing (DAS), and vegetative growth, dry mass of 1000 seeds and grain yield were evaluated. The same plots were utilized for the cultivation of cowpea, during the rainy season of 2008. At the end of the crop, cycle plants of this species were harvested, being evaluated the vegetative growth and plant yield. Soil samples were collected before and after maize and cowpea cultivation. The salinity of irrigation water above 2.2 dS m-1 reduced the yield of maize during the dry season. The high total rainfall during the rainy season resulted in leaching of salts accumulated during cultivation in the dry season, and eliminated the possible negative effects of salinity on cowpea plants. However, this crop showed atypical behavior with a significant proportion of vegetative mass and low pod production, which reduced the efficiency of this strategy of crop rotation under the conditions of this study.
Resumo:
The utilization of organic wastes represents an alternative to recover degraded pasture. The experiment aimed to assess the changes caused by the provision of different organic waste (poultry litter, turkey litter and pig manure) in a medium-textured Oxisol in Brazilian Savanna under degraded pasture. It was applied different doses of waste compared to the use of mineral fertilizers and organic mineral and evaluated the effect on soil parameters (pH, organic matter, phosphorus and potassium) and leaf of Brachiariadecumbens (crude protein, phosphorus and dry mass production). It was observed that application of organic waste did not increase the level of soil organic matter and pH in the surface layer, and the application of turkey litter caused acidification at depths of 0.20-0.40 m and 0.40-0.60 m. There was an increase in P and K in the soil with the application of poultry litter and swine manure. All organic wastes increased the productivity of dry matter and crude protein and phosphorus. The recycling of nutrients via the application of organic waste allows efficiency of most parameters similar to those observed with the use of mineral sources, contributing to improving the nutritional status of soil-plantsystem.
Resumo:
The aim of this study was to quantify the water consumption and the crop coefficients (Kc) for the potato (Solanum tuberosum L.), in Seropédica, Rio de Janeiro (RJ), Brazil, under organic management, and to simulate the crop evapotranspiration (ETc) using the Kc obtained in the field and the ones recommended by the Food and Agriculture Organization (FAO). The water consumption was obtained through soil water balance, using TDR probes installed at 0.15m and 0.30m deep. At the different stages of development, the Kc was determined by the ratio of ETc and reference evapotranspiration, obtained by Penman-Monteith FAO 56. The crop coefficients obtained were 0.35, 0.45, 1.29 and 0.63. The accumulated ETc obtained in the field was 109.6 mm, while the ETc accumulated from FAO's Kc were 142.2 and 138mm, respectively, considering the classical values and the values adjusted to the local climatic conditions. The simulation of water consumption based on meteorological data of historical series from 1961 to 2007 provided higher value of ETc when compared with the one obtained in the field. From the meteorological data of historical series, it was observed that the use of Kc recommended by FAO may overestimate the amount of irrigation water by 9%, over the same growing season.
Resumo:
In order to identify alternatives for the use of saline water in agricultural production, the effects of the use of brackish water in the preparation of the nutrient solution for the cultivation of sunflower (cv. EMBRAPA 122-V2000) were studied in hydroponic system on consumption and efficiency of water use for the production of achenes and biomass. A completely randomized design was used, analyzed in a 5x2 factorial scheme with three replications. The factors studied were five levels of salinity of nutrient solution (1.7 - control; 4.3; 6.0; 9.0; and 11.5dS m-1) and two plant densities - one or two plants per vessel. It was concluded that the water consumption of sunflower is a variable sensitive to the salinity of the nutrient solution, especially after the fourth week of crop, and that the efficiency of water use in the production of achenes and biomass of sunflower is greater when the plant density increases from one to two plants per vessel, even under saline stress.
Resumo:
This study aimed to evaluate the effect of Moringa oleifera Lam extract on the removal of total solids (TS), total suspended solids (TSS) and chemical oxygen demand (COD), in different filter media for treating wastewater of dairy cattle breeding (DCW). The moringa seed extract was obtained by grinding 50 g of seeds in one liter of distilled water and, after passing the solution through a quantitative paper filter of 25 microns, 60 mL of the extract were added to wastewater from cattle breeding before the filtration process in organic filters made of thin coal, bamboo leaves, eucalyptus leaves, gliricidia branches and sawdust. This was followed by the completely randomized experimental design, adopting a factorial of 5 x 2. Aliquots of filtered effluent were collected and the total solids (TS) concentrations, total suspended solids (TSS) and chemical oxygen demand (COD) were determined. It was found that the increase in the efficiency of removal of COD and total solids can be attributed to the coagulating power of the moringa seed extract, wherein the filter medium with bamboo leaves presented the best performance, showing potential for use as alternative filter material in the primary treatment of DCW.
Resumo:
This paper sought to evaluate the behavior of an upflow Anaerobic-Aerobic Fixed Bed Reactor (AAFBR) in the treatment of cattle slaughterhouse effluent and determine apparent kinetic constants of the organic matter removal. The AAFBR was operated with no recirculation (Phase I) and with 50% of effluent recirculation (Phase II), with θ of 11h and 8h. In terms of pH, bicarbonate alkalinity and volatile acids, the results indicated the reactor ability to maintain favorable conditions for the biological processes involved in the organic matter removal in both operational phases. The average removal efficiencies of organic matter along the reactor height, expressed in terms of raw COD, were 49% and 68% in Phase I and 54% and 86% in Phase II for θ of 11h and 8h, respectively. The results of the filtered COD indicated removal efficiency of 52% and k = 0.0857h-1 to θ of 11h and 42% and k = 0.0880h-1 to θ of 8h in the Phase I. In Phase II, the removal efficiencies were 59% and 51% to θ of 11h and 8h, with k = 0.1238h-1 and k = 0.1075 h-1, respectively. The first order kinetic model showed good adjustment and described adequately the kinetics of organic matter removal for θ of 11h, with r² equal to 0.9734 and 0.9591 to the Phases I and II, respectively.
Resumo:
It was to aimed it to investigate effects of various saline water use strategies on melon production and quality of two cultivars (Cucumis melo L., Sancho - C1 and Medellín - C2. The plants were irrigated with water of low (S1 = 0.61 dS m-1) and high (S2 = 4.78 dS m-1) salinity levels, during each crop stage: S1S1S2S2 - T1; S2S1S2S2 - T2; S2S2S1S2 - T3. The 1st, 2nd, 3rd and 4th terms of these sequences correspond to initial growth, flowering, fruit ripening and harvest phenological stages, respectively. Additionally, there was irrigation rotation during all cycle, with water S1 during two days followed by S2 for one day (S1 2 dias + S2 1 dia - T4) and irrigation with non-salt water S2 during all cycle - T5. Moreover, we used as control, the irrigation water at 3.2 dS m-1 resulting from water mixture of S1 and S2 - T6 (farm used irrigation management). The experiment was carried out in Pedra Preta Farm, in Mossoró, RN, using an entire randomized block statistical design in a 6x2 subdivided plot scheme with four replications. Saline water irrigation at initial growth stage reduces leaf area and shoot dry phytomass of Sancho and Medellín melon cultivars. The irrigation by T4 provided the highest phytomass production of fruits at 48 DAS, reducing in 33% of good quality water in irrigation.
Resumo:
Sustainable production is a principle in which we must meet the needs of the present without compromising the capacity of future generations. Despite the successful development of pesticides against endo and ectoparasites found in domestic ruminants, these parasites are still the major problem of the herbivore production system. The purpose of this study was to know the population of gastrintestinal parasites and their influence on weight gain of calves kept in organic and conventional grazing. Thus, organic and conventional calves were randomly selected in 2008 and 2009. The fecal egg count (FEC) indentified the following genders of helminths: Haemonchus, Trichostrongylus, Oesophagostomum, Cooperia, Strongyloides, Trichuris and oocysts of Eimeria. There was no significant difference (p>0.05) between FEC in organic and conventional animals. Calves younger than 6 months showed significant higher infection (p<0.05) than calves between 7 and 12 months of age. The weight gain observed during the study was of 327g/day and 280g/day for conventional and organic systems animals, respectively. Consequently, the combination of sustainable practices of grazing associated with the selective application of anthelmintics may be a feasible alternative for nematode control in a conventional system and in transition to an organic one.
Resumo:
Many attempts have been made to establish the control of foodborne pathogens through Lactobacillus isolates and their metabolism products with success being obtained in several situations. The aim of this study was to investigate the antagonistic effect of eight Lactobacillusisolates, including L. caseisubsp. pseudoplantarum,L. plantarum, L. reuteri and L. delbrueckii subsp. delbrueckii, on the pathogenic Escherichia colistrain O157:H7. The inhibitory effect of pure cultures and two pooled cultures supernatants of Lactobacillus on the growth of pathogenic bacteria was evaluated by the spot agar method and by monitoring turbidity. Antimicrobial activity was confirmed for L. reuteri and L. delbrueckii subsp. delbrueckii and for a pool of lactic acid bacteria. The neutralized supernatant of the pool exerted a higher antimicrobial activity than that of the individual strains. Furthermore, D-lactic acid and acetic acid were produced during growth of the Lactobacillus isolates studied.