174 resultados para grain yield
Resumo:
The evaluation of technologies employed at the agricultural production system such as crop rotation and soil preparation, both associated with crop-livestock integration, is crucial. Therefore, the aim of the present study was to evaluate the incorporation of lime for three no-tillage systems and cultural managements in system of crop-livestock integration, with emphasis on corn grain yield. The experiment was conducted from January 2003 to April 2005 at Selvíria city, MS, in Dystroferric Red Latosol, clay texture. The experimental design was randomized blocks with split plots consisted of three main treatments, aimed the soil physics conditioning and the incorporation of lime: PD - No-no-tillage; CM - minimum no-tillage, and PC - conventional no-tillage; and of two secondary treatments related to the management: rotation and crop succession, with four replications. Data on agronomic traits of maize were analyzed: plant height, stem diameter, height of the first spike insertion, 100 grains weight and grain yield. The results showed that the maize produced under the system of crop-livestock integration is quite feasible, showing that grain yields are comparable to averages in the region and the different soil physical conditioning and incorporation of lime did not influence the corn yield as well as the cultural managements, rotation and succession, did not affect the maize crop behavior after two years of cultivation.
Resumo:
Among studies focused on increasing soybean grain yield, the ones related to sowing process are the most significant. Considering that soybean has an epigeal emergence, it becomes difficult to hint at the length covered by hypocotyl up to soil surface, or the actual planting depth. This study aimed to find an indicator that allows the identification of an ideal soybean planting depth. For this purpose, two complementary assays has been carried out in a greenhouse. The first aimed to identify structures that could be indicators of seed planting depth, on a medium-textured soil from Campos Gerais region, in the state of Paraná, Brazil. Spring NK 8350 cultivar seeds were sown at five theoretical depths (1, 2, 3, 4 and 5 cm). As seedlings emerged, the “differentiation zone” and the “root curve” depths were measured. The second assay was the validation of the suggested indicators in assay 1 from two soils, one medium-textured and one clay-textured. For this assay, it was used BRS 232. Both the methodologies showed high correlation with the theoretical planting depth. Although their correlation coefficient values were close, the differentiation zone appeared to be the most efficient reference with less planting depth overestimation.
Resumo:
Field experiments were carried out in 1999 and 2000 to investigate the effects of conventional (CT) and no-tillage (NT) systems, interacting with three herbicide dose levels and three nitrogen (N) levels on weed growth and wheat production of two varieties. There was a higher grain yield for NT system compared with CT in one year. CT weed biomass was lower than from NT weed biomass, in both varieties. No differences on wheat biomass and grain yield were observed between full and reduced herbicide rates. N fertilizer increased wheat biomass and grain yield significantly. Only N medium level had an effect upon weed biomass with respect to non-fertilized plots, while the highest fertilization rate lowered weed biomass. Conventional tillage, reduced herbicide rates and nitrogen fertilization were effective ways of limiting weed production in wheat.
Resumo:
A reduction in herbicide use is one of modern agriculture's main interests and several alternatives are being investigated with this objective, including intercropping. Gliricídia (Gliricidia sepium) mulch has no allelopathic effect on corn or beans but significantly decreased the population of some weed species. The objective of this study was to evaluate green ear and grain yield in corn cultivars as a response to weed control achieved via intercropping with gliricidia. A completely randomized block design with five replicates and split-plots was used. Cultivars AG 1051, AG 2060, BRS 2020, and PL 6880 (assigned to plots) were submitted to the following treatments: no hoeing, hoeing (performed at 20 and 40 days after sowing the corn), and corn intercropped with gliricidia. Gliricidia was grown in a transplanting system to ensure uniform germination and fast establishment in the field. Seeding was made in 200-cell trays with one seed per cell (35 mL volume). The plants emerged two to three days after sowing and were transplanted to a permanent site two to three days after emergence. Corn was sown on the same day gliricidia was transplanted. Sixteen weed species occurred at different frequencies, with uneven distribution in the experimental area. Cultivars AG 1051 and AG 2060 were the best with reference to most characteristics employed to evaluate green corn yield. Cultivar AG 1051 provided the highest grain yield. The highest green ear yield and grain yield values were obtained with hoeing. However, the fact that intercropped plots showed intermediate yield between the values obtained for hoed and non-hoed plots indicates that gliricidia was beneficial to corn, and exerted a certain level of weed control.
Resumo:
In general, lodging has been controlled by restricting nitrogen fertilizer application and/or using short cultivars. Growth retardants can also be used to solve this problem.The objective of this study was to evaluate the effect of rates and application times of three growth retardants on Pioneiro wheat cultivar. The trial was carried out in Viçosa-MG, from May to September 2005, in a factorial and hierarchical scheme, in a randomized block design with four replications and a control treatment. The treatments consisted of 500, 1,000 and 1,500 g ha-1 of chlormequat; 62.5, 125 and 187.5 g ha-1 of trinexapac-ethyl and 40, 80 and 120 g ha-1 of paclobutrazol applied at growth stages 6 or 8, growth stage used on the scale of Feeks and Large, and a control treatment without growth retardant application. Only trinexapac-ethyl and chlormequat were efficient in reducing plant height; the effect of chlormequat and paclobutrazol on plant height was independent of the application time, but the trinexapac-ethyl at growth stage 8 produced shorter plant height than at stage 6. Increasing growth retardant rates produced shorter plant heights; chlormequat and paclobutrazol did not affect grain yield. However, the highest trinexapac-ethyl rates reduced wheat yield.
Resumo:
Herbicides have simplified weed control, but the use of herbicides, besides being costly, resulted in the selection of herbicide-resistant weed biotypes and has become an environmental contamination factor. Herbicide use reduction is one of the goals of modern agriculture, with several alternatives being investigated, including intercropping. The objective of this study was to evaluate the effects of cowpea and corn cultivar intercropping on weed control and corn green-ear (immature ears with 80% humidity grains) and grain yield. A completely randomized block design with split-plots and four replications was used. AG 1051, AG 2060 and PL 6880 corn cultivars (assigned to plots) were submitted to the four treatments: no weeding, two hoe-weeding (22 and 41 days after planting), and intercropping with cowpea (BR 14 and IPA 206 cultivars, with indeterminate growth). The cowpea was planted (with corn planting) between the corn rows, in pits 1.0 m apart, with two plants per pit. The corn cultivars did not differ from each other as to weed density (WD), fresh above-ground weed biomass (WB), green-ear yield and grain yields. Higher WD and WB mean values were found in no weeding subplots; lower mean values in two hoe-weeding subplots; and intermediate mean values in intercropped subplots, indicating that cowpea plants had, to a certain extent, control over weeds. The no-weeded plots and the intercropped plots had lower green-ear and grain yields. Although the cowpea cultivars had a certain control over weeds (mean reductions of 22.5 and 18.3%, in terms of green matter density and weight of the above-ground part of weeds, respectively), they also competed against the corn plants, leading to yield reduction (mean reductions of 17.0 and 32% in green ear and grain yield, respectively). The cowpea cultivars did not produce grain, certainly due to the strong competition exerted by the corn and weeds on cowpea plants.
Resumo:
Reduced use of herbicides that cause environmental pollution problems is of great interest in modern agriculture. Soil mulching with gliricidia (Gliricidia sepium) branches does not have an allelopathic effect on corn, but decreases weed populations. The objective of this study was to evaluate the effects of gliricidia planting density, when grown as an intercrop, on weed control and corn yield parameters. A randomized block design with split-plots and ten replicates was adopted. Corn cultivars AG 1051 and BM 3061 were grown without hoeing, with two hoes (at 24 and 44 days after planting), and intercropped with gliricidia (planted simultaneously with corn, between crop rows, using two seedlings/pit, spaced at 30, 40, or 50 cm). Twenty-one weed species were found in the experimental area. Increased gliricidia planting density reduced weed biomass, but no difference was found between weed biomass in the intercrop and weed biomass in non-hoed corn. Gliricidia intercropped with corn, planted at a row spacing of 30 cm, did not significantly differ from hoed corn in most characteristics considered to evaluate green corn yield, although mean values were smaller. As to the number and weight of marketable green ears, reductions of 5% and 13%, respectively, were observed. Intercropping caused a 17% reduction in grain yield, reducing the losses (36%) observed in non-hoed corn by more than 50%. The highest green ear yield and grain yield values were obtained with two hoeings, while the lowest values were observed for non-hoed corn. The cultivars did not differ regarding green ear yield and grain yield.
Resumo:
Two field experiments were conducted to evaluate the effects of multispecies weed competition on wheat grain yield and to determine their economic threshold on the crop. The experiments were conducted in 2002, on two sites in Iran: at the Agricultural Research Station on Ferdowsi University of Mashhad (E1) and on the fields of Shirvan's Agricultural College (E2). A 15 x 50 m area of a 15 ha wheat field in E1 and a 15 x 50 m area of a 28 ha wheat field in E2 were selected as experimental sites. These areas were managed like other parts of the fields, except for the use of herbicides. At the beginning of the shooting stage, 30 points were randomly selected by dropping a 50 x 50 cm square marker on each site. The weeds present in E1 were: Avena ludoviciana, Chenopodium album, Solanum nigrum, Stellaria holostea, Convolvulus spp., Fumaria spp., Sonchus spp., and Polygonum aviculare. In E2 the weeds were A. ludoviciana, Erysimum sp., P. aviculare, Rapistrum rugosum, C. album, Salsola kali, and Sonchus sp. The data obtained within the sampled squares were submitted to regression equations and weeds densities were calculated in terms of TCL (Total Competitive Load). The regression analysis model indicated that only A. ludoviciana, Convolvulus spp. and C. album, in E1; and A. ludoviciana, S. kali, and R. rugosum, in E2 had a significant effect on the wheat yield reduction. Weed economic thresholds were 5.23 TCL in E1 and 6.16 TCL in E2; which were equivalent to 5 plants m-2 of A. ludoviciana or 12 plants m-2 of Convolvulus spp. or 19 plants m-2 of C. album in E1; and 6 plants m-2 A. ludoviciana, 13 plants m-2 S. kali and 27 plants m-2 R. rugosum in E2. Simulations of economic weed thresholds using several wheat grain prices and weed control costs allowed a better comparison of the experiments, suggesting that a more competitive crop at location E1 than at E2 was the cause of a lower weed competitive ability at the first location.
Resumo:
There is interest in the identification of the best seeding density for new corn hybrids and on reduced use of herbicides for weed control. The objective of this study was to evaluate the effects of seeding density (30, 50, 70, and 90 thousand plants ha-1) and weed control on green ear yield and grain yield in corn cultivar AG 1051. A completely randomized block design was adopted with split-plots (seeding densities assigned to plots) and ten replicates. Weed control was achieved by means of two hoeings and by planting corn intercropped with gliricidia (between corn rows, in pits spaced 0.3 m apart). A "no weeding"treatment was included as well. Increased seeding density increased the total number and weight of marketable green ears and decreased the biomass of both weeds and gliricidia. In non-weeded, intercropped and hoed plots, the maximum grain yield values achieved as seeding density increased were 7,881, 7,021, and 9,213 kg ha-1, respectively, obtained with populations of 67 thousand, 74 thousand, and 67 thousand plants per hectare, respectively. Intercropping did not control weeds (26 species) and provided weed growth, green ear yield, and grain yield (at the lowest densities) similar to those obtained without hoeing, except for total number of green ears, in which no influence of weed control was observed. At densities of 70 thousand and 90 thousand plants per hectare, grain yield with two hoeings was not different from yield values obtained without weeding or in the treatment intercropped with gliricidia, respectively, indicating that increased corn seeding density as well as gliricidiamay help to control weeds.
Resumo:
Some growers and researchers sustain the idea that regrowth or root setting of some weeds may occur after hoeing, with detrimental effects over corn. The objective of this study was to evaluate the effects of weed removal from the field, removal after each hoeing, and corn intercropped with gliricidia on weed control and corn yield values. The experimental design consisted of blocks with split-plots and six replicates. Cultivars AG 1051 and BM 2022, planted in the plots, were submitted to the following treatments: no hoeing, two hoeings (at 20 and 40 days after planting), and intercropped with gliricidia. The hoed plots were either submitted to weed removal after the first, second, or both hoeings, or remained without weed removal. In the intercropped treatment, gliricidia was sown by broadcasting at corn planting between the corn rows, at a density of 15 seeds m-2. Twenty-five weed species occurred in the experiment; the most frequent was Digitaria sanguinalis (family Poaceae). The weed control methods tested had similar effects on the cultivars, which were not different from one another with respect to the evaluated traits, except for one-hundred-kernel weight, with cultivar AG 1051 being superior. Weed removal did not influence green corn yield or grain yield. However, the number of kernels/ear was higher in plots where weeds were removed in relation to plots without weed removal, suggesting that weed removal might be beneficial to corn. Besides, a higher dry matter weight was obtained for the above-ground part of weeds removed from the field after the first and second hoeings than the weight of weeds removed after the second hoeing only which, in turn, was higher than the weight of weeds removed after the first hoeing only. Green ear yield, grain yield, and dry matter of the above-ground part of the weeds did not show differences in hoed plots and were superior to the non-weeded plots and the intercropped plots, which were not different from each other; therefore, intercropping with gliricidia did not improve corn yield values.
Resumo:
Many studies have demonstrated the beneficial influence of nitrogen doses on corn dry grain yield and green ear yield. Due to a growing concern with environmental degradation, many agricultural practices, adopted in the past, are being reexamined. With regard to weed control, strategies that employ mechanical control, including intercrops, are being the object of renewed interest. The purpose of this study was to evaluate the effects of the application of nitrogen doses (0, 40, 80, and 120 kg N ha-1; as ammonium sulfate) and weed control on the growth, green ear yield, and grain yield of the AG 1051 corn cultivar. A randomized block experimental design with split-plots and nine replications was adopted. In addition to nitrogen rates, the AG 1051 cultivar was submitted to the following treatments, applied to subplots: no weeding, two hoeings (at 20 and 40 days after sowing), and intercropping with gliricídia (Gliricidia sepium). Gliricidia was sowed at corn planting, between the corn rows, using two seedlings per pit, in pits spaced 0.30 m apart. Gliricidia did not provide weed control, and gave plant growth, green ear yield and grain yield values similar to the no weeding treatment. However, regarding the number of mature ears got, intercropping with gliricidia did not differ from the two-hoeing treatment. Weed control did not have an effect on plant height and number of marketable, husked green ears, with the application of 120 kg N ha-1; indicating that nitrogen improved the corn's competitive ability. The two-hoeing treatment provided the best means for total green ears weight, number of marketable husked ears, both unhusked and husked marketable ear weight, grain yield and its components than the other treatments. Nitrogen application increased corn growth, green ear yield, and grain yield, as well as weed green biomass, but reduced the stand and growth of gliricidia.
Resumo:
There has been interest in reducing the use of herbicides for weed control in order to decrease environmental degradation problems. The objective of this study was to evaluate the effects of gliricidia planting density sown by broadcasting and intercopping on green ear and corn grain yield as well as on weed control. A randomized block design with split-plots and five replicates were adopted. Cultivars AG 1051, BM 2022, and BM 3061, assigned to plots, were submitted to the following treatments: no hoeing, two hoeings (at 20 and 40 days after sowing), and intercropped with gliricidia sown at densities of 10 and 20 seeds m-2. Thirty weed species occurred in the experiment area, with Cucumis anguria as the most frequent ones. Cultivar BM 2022 was the best for the total number of ears (TNE) and number (NMHE) and weight of marketable husked ears. Together with cultivar AG 1051, this cultivar had the highest total weight and marketable unhusked ear weight (MUEW). However, the cultivars did not differ with respect to grain yield (GY). The highest green ear and corn grain yield and weed control percentages were obtained with two hoeings; in MUEW, NMHE and GY, intercropping provided intermediate means in comparison with those obtained in hoed and non-hoed plots, indicating that gliricidia was partially beneficial to corn. Increased gliricidia seeding density heightened the benefits to corn (TNE and MUEW). The lack of hoeing produced the poorest green ear and grain yields.
Resumo:
An active ingredients mixture of different action mechanisms is an essential tool to prevent or manage areas with resistant weeds. However, it is important that such a mixture provides adequate selectivity to the crop. The aim of this work was to evaluate glyphosate selectivity to glyphosate-resistant (RR) soybean, and also verify if there is selectivity in mixtures with other active ingredients applied postemergence aimed at new control strategies, which might be used in RR soybean cultivation. The herbicides and respective rates (g ha-1) evaluated were: glyphosate (720, 960, 1,200, and 1,440), and the mixtures of glyphosate (960) with cloransulam-methyl (30.24), fomesafen (125), lactofen (72), chlorimuron-ethyl (12.5), flumiclorac-pentyl (30), bentazon (480), or imazethapyr (80). All treatments were applied in postemergence when the soybean crop was at V2 to V3 stage. Treatments with glyphosate or in mixtures with postemergent herbicides showed visual effects of phytotoxicity when applied to the glyphosate-resistant soybean. Effects such as reduction in plant height, crop closure, number of pods per plant, and hundred grain weight could be observed. However, the effects related to plant development were mostly transient and did not persist during the crop cycle. Among the studied treatments, only the mixture of glyphosate and lactofen was not selective to the crop, promoting negative effects on most characteristics analyzed and consequently reducing grain yield.
Resumo:
The aim of this study was to determine the economic damage threshold of Pigweed redroot for corn regarding its density. An experiment was conducted at the Agriculture Research station of Islamic Azad University branch of Gonabad during 2006. The experiment was carried out as a factorial in a randomized complete block design with three replications. In the experiments, the factors included corn (var. 704) densities of 7.5, 8.5 and 9.5 plants m-2 and pigweed redroot densities of 0, 2, 4, 6 and 8 plants m-2. The increase in Pigweed redroot density, decrease in crop grain and biomass yield components such as ear length, ear diameter, number of grains per row, row number, grain number in ear, grain yield and biological yield of corn, decreased. Also, with an increase in corn density, the number of grain per rows, row number, grain yield and biological yield of corn increased. The economic thresholds density of Pigweed redroot was 0.09 to 0.13 plants m-2 in corn different densities, and increased with corn density increases.
Resumo:
The existence of large areas infested with populations of Conyza spp. resistant to glyphosate in Brazil demands appropriate and integrated management strategies. This experiment aimed to identify soybean cultivars with greater competitive ability with horseweed plants and to determine plant characteristics associated with this ability. The experiment was arranged in a randomized complete block design with split plots. Seven soybean cultivars (CD 225 RR, BRS 232, CD 226 RR, NK 7054 RR, BMX Apollo RR, BRS 245 RR and BRS 255 RR) were allocated in the plots, and two interference situations (absence and 13.3 plants of Conyza m-2, transplanted seven days before soybean planting) in the subplots. The average yield loss due to competition with horseweed was 25%. Cultivar CD 226 RR showed no significant grain yield loss due to competition, compared to the control without infestation, but showed the lowest average grain yield. The BRS 232 genotype showed loss of grain yield of only 14%, and presented positive plant height and leaf mass at 20 DAE, as well as dry matter of stems+branches in all evaluations, features related to its higher performance and greater ability to withstand competition with horseweed plants.