123 resultados para drug intoxication


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioresorbable polymeric films were prepared by solvent casting using a tyrosine-derived polycarbonate and metronidazole (MDZ) as the model drug at 2.5%, 5% and 10% (w/w). Drug loading did not affect the water uptake, drug release, polymer degradation or erosion profiles. All devices released approximately 85% (w/w) of the drug within a 1.5 h period. This may be attributed to the rapid water uptake of the polymer. An increase in the water uptake correlated with a linear rate increase of the polymer degradation (0.968 ≤ R2 ≤ 0.999). Moreover, MDZ presented a remarkable plasticizing effect for the polymer and drug loading exerted a significant impact on the mechanical properties of the obtained films. The results obtained can be used to further the development of novel biocompatible and biodegradable polymeric platforms for the delivery of metronidazole and other drugs in a broad range of pharmaceutical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug trafficking and the introduction of new drugs onto the illicit market are one of the main challenges of the forensic community. In this study, the chemical profile of a new designer drug, 2-(4-iodine-2,5-dimethoxyphenyl)-n-[(2-methoxyphenyl)methyl]etamine or 25I-NBOMe was explored using thin layer chromatography (TLC), ultraviolet-visible spectrophotometry (UV-Vis), attenuated total reflection with Fourier transform infrared spectroscopy(ATR-FTIR), gas chromatography mass spectrometry (GC-MS) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS). First, the TLC technique was effective for identifying spots related to 25C-, 25B- and 25I-NBOMe compounds, all with the same retention factor, Rf ≈ 0.50. No spot was detected for 2,5-dimethoxy-4-bromoamphetamine, 2,5-Dimethoxy-4-chloroamphetamine or lysergic acid diethylamide compounds. ATR-FTIR preserved the physical-chemical properties of the material, whereas GC-MS and ESI-MS showed better analytical selectivity. ESI(+)FT-ICR MS was used to identify the exact mass (m/z428.1706 for the [M + H]+ ion), molecular formula (M = C18H22INO3), degree of unsaturation (DBE = 8) and the chemical structure (from collision induced dissociation, CID, experiments) of the 25I-NBOMe compound. Furthermore, the ATR-FTIR and CID results suggested the presence of isomers, where a second structure is proposed as an isomer of the 25I-NBOMe molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two simple, rapid and cost-effective methods based on titrimetric and spectrophotometric techniques are described for the assay of RNH in bulk drug and in dosage forms using silver nitrate, mercury(II)thiocyanate and iron(III)nitrate as reagents. In titrimetry, an aqueous solution of RNH is treated with measured excess of silver nitrate in HNO3 medium, followed by determination of unreacted silver nitrate by Volhard method using iron(III) alum indicator. Spectrophotometric method involve the addition a known excess of mercury(II)thiocyanate and iron(III)nitrate to RNH, followed by the measurement of the absorbance of iron(III)thiocyante complex at 470 nm. Titrimetric method is applicable over 4-30 mg range and the reaction stoichiometry is found to be 1:1 (RNH: AgNO3). In the spectrophotometric method, the absorbance is found to increase linearly with concentration of RNH which is corroborated by the correlation coefficient of 0.9959. The system obey Beer's law for 5-70 µg mL-1. The calculated apparent molar absorptivity and sandell sensitivity values are found to be 3.27 ´ 10³ L mol-1 cm-1, 0.107 µg cm-2 respectively. The limits of detection and quantification are also reported for the spectrophotometric method. Intra-day and inter-day precision and accuracy of the methods were evaluated as per ICH guidelines. The methods were successfully applied to the assay of RNH in formulations and the results were compared with those of a reference method by applying Student's t and F-tests. No interference was observed from common pharmaceutical excipients. The accuracy of the methods was further ascertained by performing recovery tests by standard addition method.