146 resultados para Solvent extraction
Resumo:
To identify early metabolic abnormalities in type 2 diabetes mellitus, we measured insulin secretion, sensitivity to insulin, and hepatic insulin extraction in 48 healthy normal glucose-tolerant Brazilians, first-degree relatives of type 2 diabetic patients (FH+). Each individual was matched for sex, age, weight, and body fat distribution with a person without history of type 2 diabetes (FH-). Both groups were submitted to a hyperglycemic clamp procedure (180 mg/dl). Insulin release was evaluated in its two phases. The first was calculated as the sum of plasma insulin at 2.5, 5.0, 7.5, and 10.0 min after the beginning of glucose infusion, and the second as the mean plasma insulin level in the third hour of the clamp procedure. Insulin sensitivity index (ISI) was the mean glucose infusion rate in the third hour of the clamp experiment divided by the mean plasma insulin concentration during the same period of time. Hepatic insulin extraction was determined under fasting conditions and in the third hour of the clamp procedure as the ratio between C-peptide and plasma insulin levels. FH+ individuals did not differ from FH- individuals in terms of the following parameters [median (range)]: a) first-phase insulin secretion, 174 (116-221) vs 207 (108-277) µU/ml, b) second-phase insulin secretion, 64 (41-86) vs 53 (37-83) µU/ml, and c) ISI, 14.8 (9.0-20.8) vs 16.8 (9.0-27.0) mg kg-1 min-1/µU ml-1. Hepatic insulin extraction in FH+ subjects was similar to that of FH- ones at basal conditions (median, 0.27 vs 0.27 ng/µU) and during glucose infusion (0.15 vs 0.15 ng/µU). Normal glucose-tolerant Brazilian FH+ individuals well-matched with FH- ones did not show defects of insulin secretion, insulin sensitivity, or hepatic insulin extraction as tested by hyperglycemic clamp procedures.
Resumo:
We determined the antioxidant status of the aqueous humor after extracapsular lens extraction in 14 mongrel dogs weighing about 10 kg. The animals were examined by slit lamp biomicroscopy, applanation tonometry and indirect ophthalmoscopy. One eye was submitted to conventional extracapsular lens extraction and the other was used as control. Samples of aqueous humor were obtained by anterior chamber paracentesis before and at days 1, 2, 3, 7 and 15 after surgery. Total antioxidant status was determined as the capacity of aqueous humor to inhibit free radical generation by 2,2-azobis(2-amidopropane) chlorine. Ascorbic acid concentration was measured by HPLC with UV detection. Protein content was determined with the biuret reagent. Statistical analysis was performed by ANOVA followed by the Tukey-Kramer test. Protein concentration increased from 0.61 to 22 mg/ml 24 h after surgery. These levels were maintained and returned to normal at day 7. Total antioxidant capacity was reduced from 50 to about 30 min until day 3 and at day 7 it was equal to control. Ascorbic acid levels were reduced from 252 to about 110 µM and then returned to control values at day 15. Considering the importance of ascorbic acid concentration in aqueous humor for the maintenance of the antioxidant status of the anterior segment of the eye, the decrease of antioxidant defenses suggests that the surgical procedures promote an oxidative stress condition in the eye.
Resumo:
The objective of the present study was to develop a simplified low cost method for the collection and fixation of pediatric autopsy cells and to determine the quantitative and qualitative adequacy of extracted DNA. Touch and scrape preparations of pediatric liver cells were obtained from 15 cadavers at autopsy and fixed in 95% ethanol or 3:1 methanol:acetic acid. Material prepared by each fixation procedure was submitted to DNA extraction with the Wizard® genomic DNA purification kit for DNA quantification and five of the preparations were amplified by multiplex PCR (azoospermia factor genes). The amount of DNA extracted varied from 20 to 8,640 µg, with significant differences between fixation methods. Scrape preparation fixed in 95% ethanol provided larger amount of extracted DNA. However, the mean for all groups was higher than the quantity needed for PCR (50 ng) or Southern blot (500 ng). There were no qualitative differences among the different material and fixatives. The same results were also obtained for glass slides stored at room temperature for 6, 12, 18 and 24 months. We conclude that touch and scrape preparations fixed in 95% ethanol are a good source of DNA and present fewer limitations than cell culture, tissue paraffin embedding or freezing that require sterile material, culture medium, laboratory equipment and trained technicians. In addition, they are more practical and less labor intensive and can be obtained and stored for a long time at low cost.
Resumo:
A bacterial strain (PAP04) isolated from cattle farm soil was shown to produce an extracellular, solvent-stable protease. Sequence analysis using 16S rRNA showed that this strain was highly homologous (99%) to Brevibacillus laterosporus. Growth conditions that optimize protease production in this strain were determined as maltose (carbon source), skim milk (nitrogen source), pH 7.0, 40°C temperature, and 48 h incubation. Overall, conditions were optimized to yield a 5.91-fold higher production of protease compared to standard conditions. Furthermore, the stability of the enzyme in organic solvents was assessed by incubation for 2 weeks in solutions containing 50% concentration of various organic solvents. The enzyme retained activity in all tested solvents except ethanol; however, the protease activity was stimulated in benzene (74%) followed by acetone (63%) and chloroform (54.8%). In addition, the plate assay and zymography results also confirmed the stability of the PAP04 protease in various organic solvents. The organic solvent stability of this protease at high (50%) concentrations of solvents makes it an alternative catalyst for peptide synthesis in non-aqueous media.
Resumo:
Residual fibers from palm oil production are a good source of carotene, since they contain more than 5% of the original oil, with about 5000 ppm of carotenoids. As carotenoids are thermosensitive molecules, supercritical CO2 can be used for oil recovery, because this technique employs low temperatures. In this work results of oil extraction experiments from pressed palm oil fibers are shown. Fibers were from AGROPALMA, an industry which is located in Tailândia (Pará, Brazil). Extractions were carried out at 200, 250 and 300 bar and at temperatures of 45 and 55oC. Oil was analyzed by UV/vis spectrophotometry for total carotene determination. Results showed a large increase in extraction rate from 200 to 250 bar and a small variation from 250 to 300 bar. The total amount of carotenes did not increase in the course of extraction at 300 bar, but it showed a large increase at 200 and at 250 bar. Free fatty acids are present in amounts larger than those found in commercial oils.
Resumo:
The influence of some process variables on the productivity of the fractions (liquid yield times fraction percent) obtained from SCFE of a Brazilian mineral coal using isopropanol and ethanol as primary solvents is analyzed using statistical techniques. A full factorial 23 experimental design was adopted to investigate the effects of process variables (temperature, pressure and cosolvent concentration) on the extraction products. The extracts were analyzed by the Preparative Liquid Chromatography-8 fractions method (PLC-8), a reliable, non destructive solvent fractionation method, especially developed for coal-derived liquids. Empirical statistical modeling was carried out in order to reproduce the experimental data. Correlations obtained were always greater than 0.98. Four specific process criteria were used to allow process optimization. Results obtained show that it is not possible to maximize both extract productivity and purity (through the minimization of heavy fraction content) simultaneously by manipulating the mentioned process variables.
Resumo:
Milk and egg matrixes were assayed for aflatoxin M1 (AFM1) and B1 (AFB1) respectively, by AOAC official and modified methods with detection and quantification by thin layer chromatography (TLC) and high performance thin layer chromatography (HPTLC). The modified methods: Blanc followed by Romer, showed to be most appropriate for AFM1 analysis in milk. Both methods reduced emulsion formation, produced cleaner extracts, no streaking spots, precision and accuracy improved, especially when quantification was performed by HPTLC. The use of ternary mixture in the Blanc Method was advantageous as the solvent could extract AFM1 directly from the first stage (extraction), leaving other compounds in the binary mixture layer, avoiding emulsion formation, thus reducing toxin loss. The relative standard deviation (RSD%) values were low, 16 and 7% when TLC and HPTLC were used, with a mean recovery of 94 and 97%, respectively. As far as egg matrix and final extract are concerned, both methods evaluated for AFB1 need further studies. Although that matrix leads to emulsion with consequent loss of toxin, the Romer modified presented a reasonable clean extract (mean recovery of 92 and 96% for TLC and HPTLC, respectively). Most of the methods studied did not performed as expected mainly due to the matrixes high content of triglicerides (rich on saturated fatty acids), cholesterol, carotene and proteins. Although nowadays most methodology for AFM1 is based on HPLC, TLC determination (Blanc and Romer modified) for AFM1 and AFB1 is particularly recommended to those, inexperienced in food and feed mycotoxins analysis and especially who cannot afford to purchase sophisticated (HPLC,HPTLC) instrumentation.
Resumo:
The true spinach (Spinacia oleracea) does not grow well in warm climates and for that reason is not commercialized in Brazil. Instead, a spinach substitute (Tetragonia expansa), originally from New Zealand, is widely used in the country. There is scant information on the mineral profile and none on the soluble mineral fraction of this vegetable. The solubility of a mineral is one of the important factors for its absorption. For this reason, the calcium, magnesium, iron, manganese, copper, zinc, potassium, and sodium soluble fractions in the raw spinach substitute were determined and the effect of blanching times on the solubility of these minerals was investigated. Blanching times of 1, 5, and 15 minutes were employed. The magnesium, manganese, potassium, and sodium soluble fractions increased sizably with shorter blanching time. Longer blanching time (15 minutes) caused large losses of minerals. The soluble mineral fractions can contribute poorly to diet in terms of potassium, magnesium, manganese, and zinc. The spinach substitute cannot be considered a dietary source of calcium, iron and copper due to the insolubility of these minerals in the vegetable, possibly caused by the large oxalate content.
Resumo:
This research note addresses the role of organic solvent amount in the production of fatty acid ethyl esters from soybean oil. N-hexane was chosen as solvent and two commercial immobilized lipases as catalysts, Novozym 435 and Lipozyme IM. The reactions were conducted in 6 hours, varying the solvent to oil ratio from zero to 50 (v/wt) and adopting adopting for Novozym 435: 65 ºC, enzyme concentration (E, wt%) = 5, oil to ethanol molar ratio (R) = 1:10, water addition (H, wt%) = 0, and for Lipozyme IM: 35 ºC, E = 5 wt%, R = 1:3, H = 10 wt%. For Lipozyme IM, an increase in solvent amount is shown to lead to an enhancement of reaction conversion, while a negligible effect was found for Novozym 435. When using 30 mL of solvent the reaction conversions were 88% for Lipozyme IM and 15% for Novozym 435.
Resumo:
The aim of the present study was the assessment of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636) using methyl and ethyl ricinoleate, ricinoleic acid and castor oil as precursors. The analysis of the volatile organic compounds was carried out using Head Space Solid Phase Micro-Extraction (HS - SPME). Factorial experimental design was used for investigating extraction conditions, verifying stirring rate (0-400 rpm), temperature (25-60 ºC), extraction time (10-30 minutes), and sample volume (2-3 mL). The identification of volatile organic compounds was carried out by Gas Chromatography with Mass Spectrum Detector (GC/MSD). The conditions that resulted in maximum extraction were: 60 ºC, 10 minutes extraction, no stirring, sample volume of 2.0 mL, and addition of saturated KCl (1:10 v/v). In the bio-production of volatile organic compounds the effect of stirring rate (120-200 rpm), temperature (23-33 ºC), pH (4.0-8.0), precursor concentration (0.02-0.1%), mannitol (0-6%), and asparagine concentration (0-0.2%) was investigated. The bio-production at 28 ºC, 160 rpm, pH 6,0 and with the addition of 0.02% ricinoleic acid to the medium yielded the highest production of VOCs, identified as 1,4-butanediol, 1,2,2-trimethylciclopropilamine, beta-ionone; 2,3-butanodione, pentanal, tetradecane, 2-isononenal, 4-octen-3-one, propanoic acid, and octadecane.
Resumo:
The DNA extraction is a critical step in Genetically Modified Organisms analysis based on real-time PCR. In this study, the CTAB and DNeasy methods provided good quality and quantity of DNA from the texturized soy protein, infant formula, and soy milk samples. Concerning the Certified Reference Material consisting of 5% Roundup Ready® soybean, neither method yielded DNA of good quality. However, the dilution test applied in the CTAB extracts showed no interference of inhibitory substances. The PCR efficiencies of lectin target amplification were not statistically different, and the coefficients of correlation (R²) demonstrated high degree of correlation between the copy numbers and the threshold cycle (Ct) values. ANOVA showed suitable adjustment of the regression and absence of significant linear deviations. The efficiencies of the p35S amplification were not statistically different, and all R² values using DNeasy extracts were above 0.98 with no significant linear deviations. Two out of three R² values using CTAB extracts were lower than 0.98, corresponding to lower degree of correlation, and the lack-of-fit test showed significant linear deviation in one run. The comparative analysis of the Ct values for the p35S and lectin targets demonstrated no statistical significant differences between the analytical curves of each target.
Resumo:
This study aimed to evaluate the antioxidant potential and fatty acid profile of gabiroba (Campomanesia xanthocarpa Berg) seeds. In order to obtain the extract, the seeds were dried, crushed, and subjected to sequential extraction by maceration and percolation in a modified soxhlet extractor using solvent polarity gradient composed of hexane, chloroform, ethyl acetate, and alcohol, respectively. The extraction time was six hours. The ethanol extract showed the highest antioxidant potential, given by the EC50 value and the amount of total phenolic compounds. High amounts of unsaturated fatty acids were found in the oil studied, especially the oleic acid.
Resumo:
Oats have received attention because of their nutritional characteristics, especially their high-quality content of β-glucan. The drying process reduces water content; therefore they can be preserved for long periods. However, high-temperature drying process may affect the physical, chemical, and functional properties of the grains. The objective of this study was to evaluate the effect of different drying temperatures on β-glucan quality in oat grains. Grains of oats (Avena sativa, L.), cultivar Albasul, harvested at harvest moisture content of 23% were submitted to stationary drying at air temperatures of 25, 50, 75, and 100 ºC until they reached 13% moisture content. The β-glucan content was determined in samples of oat grains and extraction was performed using water as solvent at 90 ºC. The β-glucan extract was evaluated for water holding capacity, water retention capacity, capacity of displacement, and gelation properties. Stationary of oat grains at air temperatures above 25 ºC decreased the water holding capacity, whereas the content of β-glucan and the water retention capacity of β-glucan extract was affected at temperatures above 50 ºC. Physical changes such as increased gelation capacity of the β-glucan extract occurred following drying at air temperature over 75 ºC.
Resumo:
This study aims to optimize an alternative method of extraction of carrageenan without previous alkaline treatment and ethanol precipitation using Response Surface Methodology (RSM). In order to introduce an innovation in the isolation step, atomization drying was used reducing the time for obtaining dry carrageenan powder. The effects of extraction time and temperature on yield, gel strength, and viscosity were evaluated. Furthermore, the extracted material was submitted to structural analysis, by infrared spectroscopy and nuclear magnetic resonance spectroscopy (¹H-NMR), and chemical composition analysis. Results showed that the generated regression models adequately explained the data variation. Carrageenan yield and gel viscosity were influenced only by the extraction temperature. However, gel strength was influenced by both, extraction time and extraction temperature. Optimal extraction conditions were 74 ºC and 4 hours. In these conditions, the carrageenan extract properties determined by the polynomial model were 31.17%, 158.27 g.cm-2, and 29.5 cP for yield, gel strength, and viscosity, respectively, while under the experimental conditions they were 35.8 ± 4.68%, 112.50 ± 4.96 g.cm-2, and 16.01 ± 1.03 cP, respectively. The chemical composition, nuclear magnetic resonance spectroscopy, and infrared spectroscopy analyses showed that the crude carrageenan extracted is composed mainly of κ-carrageenan.
Resumo:
The aim of this study was to extract and identify volatile compounds from pineapple residues generated during concentrated juice processing. Distillates of pineapple residues were obtained using the following techniques: simple hydrodistillation and hydrodistillation by passing nitrogen gas. The volatile compounds present in the distillates were captured by the solid-phase microextraction technique. The volatile compounds were identified in a system of high resolution gas chromatography system coupled with mass spectrometry using a polyethylene glycol polar capillary column as stationary phase. The pineapple residues constituted mostly of esters (35%), followed by ketones (26%), alcohols (18%), aldehydes (9%), acids (3%) and other compounds (9%). Odor-active volatile compounds were mainly identified in the distillate obtained using hydrodistillation by passing nitrogen gas, namely decanal, ethyl octanoate, acetic acid, 1-hexanol, and ketones such as γ-hexalactone, γ-octalactone, δ-octalactone, γ-decalactone, and γ-dodecalactone. This suggests that the use of an inert gas and lower temperatures helped maintain higher amounts of flavor compounds. These data indicate that pineapple processing residue contained important volatile compounds which can be extracted and used as aroma enhancing products and have high potential for the production of value-added natural essences.