222 resultados para SECONDARY COMPOUNDS
Resumo:
The chemistry of natural products has been remarkably growing in the past few decades in Brazil. Aspects related to the isolation and identification of new natural products, as well as their biological activities, have been achieved in different laboratories working on this subject in the country. More recently, the introduction of new molecular biology tools has strongly influenced the research on natural products, mainly those produced by microorganisms, creating new possibilities to assess the chemical diversity of secondary metabolites. This paper describes some ideas on how the research on natural products can have a considerable input from molecular biology in the generation of chemical diversity. We also explore the role of microbial natural products in mediating interspecific interactions and their relevance to ecological studies. Examples of the generation of chemical diversity are highlighted by using genome mining, mutasynthesis, combinatorial biosynthesis, metagenomics, and synthetic biology, while some aspects of microbial ecology are also discussed. The idea to bring up this topic is linked to the remarkable development of molecular biology techniques to generate useful chemicals from different organisms. Here, we focus mainly on microorganisms, even though similar approaches have also been applied to the study of plants and other organisms. Investigations in the frontier of chemistry and biology require interactions between different areas, characterizing the interdisciplinarity of this research field. The necessity of a real integration of chemistry and biology is pivotal to finding correct answers to a number of biological phenomena. The use of molecular biology tools to generate chemical diversity and control biosynthetic pathways is largely explored in the production of important biologically active compounds. Finally, we briefly comment on the Brazilian organization of research in this area, the necessity of new strategies for the graduation programs, and the establishment of networks as a way of organization to overcome some of the problems faced in the area of natural products.
Resumo:
Brazilian biodiversity is a colossal source of secondary metabolites with remarkable structural features, which are valuable in further biodiscovery studies. In order to fully understand the relations and interactions of a living system with its surroundings, efforts in natural product chemistry are directed toward the challenge of detecting and identifying all the molecular components present in complex samples. It is plausible that this endeavor was born out of recent technological sophistication in secondary metabolite identification with sensitive spectroscopic instruments (MS and NMR) and higher resolving power of chromatographic systems, which allow a decrease in the amount of required sample and time to acquire data. Nevertheless, the escalation of data acquired in these analyses must be sorted with statistical and multi-way tools in order to select key information. Chromatography is also of paramount importance, more so when selected compounds need to be isolated for further investigation. However, in the course of pursuing a "greener" environment, new policies, with an aim to decrease the use of energy and solvents, are being developed and incorporated into analytical methods. Metabolomics could be an effective tool to answer questions on how living organisms in our huge biodiversity work and interact with their surroundings while also being strategic to the development of high value bio-derived products, such as phytotherapeutics and nutraceuticals. The incorporation of proper phytotherapeutics in the so-called Brazilian Unified Health System is considered an important factor for the urgent improvement and expansion of the Brazilian national health system. Furthermore, this approach could have a positive impact on the international interest toward scientific research developed in Brazil as well as the development of high value bio-derived products, which appear as an interesting economic opportunity in national and global markets. Thus, this study attempts to highlight the recent advances in analytical tools used in detection of secondary metabolites, which can be useful as bioproducts. It also emphasizes the potential avenues to be explored in Brazilian biodiversity, known for its rich chemical diversity.
Resumo:
The efficiency of the chemiluminescence luminol method and colorimetric DPPH and ABTS methods in evaluating the antiradical capacity of pure compounds and plant extracts with antioxidant potential is compared. In case of pure compounds, the values of parameter 'n' (number of radicals quenched per molecule of antiradical) for ascorbic acid, p-hydroquinone, catechol, quercetin, and rutin are similar when measured by colorimetric assays; however, considerably lower values of n are obtained with the luminol assay. The antiradical activity of extracts from male and female individuals of Baccharis burchelli and Baccharis crispa were determined by the luminol assay and expressed using the new Trolox® percentage (%Trolox®) parameter.
Resumo:
This review sought to highlight the importance of natural products versus synthetic products, as bioactive molecules, towards the development of better management practices in aquaculture. The nature, structure, activity, and applications of these naturally-occurring high value-added compounds are described, as well as the methodology used for their study. Examples include the well-known rotenone, eugenol, forskolin, isatin, malyngamide, chlorodesmine, pachydictyol, fimbrolide, and other potentially active molecules in aquaculture.
Resumo:
Octocrylene (2-ethylhexyl 2-cyano-3,3-diphenyl-2-propenoate) is present in several sunscreens and is known to work synergistically with UV filters. We prepared eight octocrylene-related compounds to test their photoprotective activities by measuring diffuse transmittance. The compounds had varied photoprotection profiles, with Sun Protection Factors (SPF) ranging from 1 to 5 and UVA Protection Factors (UVAPF) ranging from 1 to 8. Compounds 4, 5, and 7 showed the best protection against UVB sunrays, while compounds 5, 6, and 7 presented the best results for protection from UVA, so compound 7 had the most balanced protection overall. Results for compounds 4, 8, and 9 are reported for the first time in the literature.
Resumo:
Among other applications, Ipomoea pes-caprae is popularly used to treat jellyfish stings, supporting the development of a product for dermatological use. Hydroethanolic spray-dried extract was chosen for the further development of phytomedicines, and a stability-indicative HPLC-UV method was developed and validated for the determination of isoquercitrin and isochlorogenic acids A, B and C. The method was developed using a C18 column (250 x 4.6 mm, 5 µm) with an acetonitrile:water mobile phase at pH 3.0 in a gradient run. The four constituents and other unidentified components of the extract were appropriately resolved without interference of degradation products after stress tests (acid, alkali, neutral, oxidant, photolysis). The method showed linearity in the isoquercitrin concentration range from 5.0-50.0 µg mL-1, with adequate precision (RSD% < 2.5% for the intra- and inter-day studies), accuracy (recovery of 100.0 ± 2.0%), and robustness. Both the herbal drug and spray-dried extract of I. pes-caprae were subjected to stability studies in accelerated and long-term conditions over four months. The samples maintained their characteristics and marker contents (< 10% of variation).
Resumo:
The use of biocatalysts in synthetic chemistry is a conventional methodology for preparing enantiomerically enriched compounds. Despite this fact, the number of experiments in chemical teaching laboratories that demonstrate the potential of enzymes in synthetic organic chemistry is limited. We describe a laboratory experiment in which students synthesized a chiral secondary alcohol that can be used in the preparation of antidepressant drugs. This experiment was conducted by individual students as part of a Drug Synthesis course held at the Pharmacy Faculty, Lisbon University. This laboratory experiment requires six laboratory periods, each lasting four hours. During the first four laboratory periods, students synthesized and characterized a racemic ester using nuclear magnetic resonance spectroscopy and gas chromatography. During the last two laboratory periods, they performed enzymatic hydrolysis resolution of the racemic ester using Candida antarctica lipase B to yield enantiomerically enriched secondary alcohol. Students successfully prepared the racemic ester with a 70%-81% overall yield in three steps. The enzymatic hydrolysis afforded (R)- secondary alcohol with good enantioselectivity (90%-95%) and reasonable yields (10%-19%). In these experiments, students were exposed to theoretical and practical concepts of aromatic acylation, ketone reduction, esterification, and enzymatic hydrolysis.
Resumo:
This paper reports on the identification of volatile and semi-volatile compounds and a comparison of the chromatographic profiles obtained by Headspace Solid-Phase Microextraction/Gas Chromatography with Mass Spectrometry detection (HS-SPME-GC-MS) of dried leaves of Mikania glomerata Sprengel (Asteraceae), also known as 'guaco.' Three different types of commercial SPME fibers were tested: polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB) and polyacrylate (PA). Fifty-nine compounds were fully identified by HS-SPME-HRGC-MS, including coumarin, a marker for the quality control of guaco-based phytomedicines; most of the other identified compounds were mono- and sesquiterpenes. PA fibers performed better in the analysis of coumarin, while PDMS-DVB proved to be the best choice for a general and non-selective analysis of volatile and semi-volatile guaco-based compounds. The SPME method is faster and requires a smaller sample than conventional hydrodistillation of essential oils, providing a general overview of the volatile and semi-volatile compounds of M. glomerata.
Resumo:
Synthesis, spectral identification, and magnetic properties of three complexes of Ni(II), Cu(II), and Zn(II) are described. All three compounds have the general formula [M(L)2(H2O)2], where L = deprotonated phenol in the Schiff base 2-((z)-(3-methylpyridin-2-yleimino)methyl)phenol. The three complexes were synthesized in a one-step synthesis and characterized by elemental analysis, Fourier transform infrared spectroscopy, electronic spectra, X-ray diffraction (XRD), and room temperature magnetic moments. The Cu(II) and Ni(II) complexes exhibited room temperature magnetic moments of 1.85 B.M. per copper atom and 2.96 B.M. per nickel atom. The X-band electron spin resonance spectra of a Cu(II) sample in dimethylformamide frozen at 77 K (liquid nitrogen temperature) showed a typical ΔMS = ± 1 transition. The complexes ([M(L)2(H2O)2]) were investigated by the cyclic voltammetry technique, which provided information regarding the electrochemical mechanism of redox behavior of the compounds. Thermal decomposition of the complexes at 750 ºC resulted in the formation of metal oxide nanoparticles. XRD analyses indicated that the nanoparticles had a high degree of crystallinity. The average sizes of the nanoparticles were found to be approximately 54.3, 30.1, and 44.4 nm for NiO, CuO, and ZnO, respectively.
Resumo:
Both primary and secondary amines react with 2,4-dinitrochlorobenzene to give derivatives of 1-alkylamino-2,4-dinitrobenzene. These compounds are important intermediates for the synthesis of a diverse range of products. The methodology reported in the present study involves either the room temperature reaction or heating at 70 °C in ethanol in the presence of triethylamine. This transformation occurs via a nucleophilic substitution reaction. The 1-alkylamino-2,4-dinitrobenzene derivatives were obtained in greater than 90% purified yield. The selective reduction of dinitro compounds is an important synthetic strategy for the synthesis of intermediates for dyes, pharmaceuticals and agrochemicals. The use of SnCl2 as a suspension in EtOAc is a promising method for the regio- and chemo-selective reduction of 1-alkylamino-2,4-dinitrobenzenes to 1-alkylamino-2-amino-4-nitrobenzenes. These products are useful intermediates in organic synthesis.
Resumo:
Certain sweet sorghums (Sorghum bicolor) inhibit the secondary sporulation of Claviceps africana, which occurs on exuded ergot honeydew when the parasite is supplied with excess sucrose, which is then transformed to unique free oligosaccharides fructosyl - mannitol and difructosyl - mannitol with spore germination inhibiting properties. Five accessions (BRA-035726-SUGAR DRIP, BRA-035696-THEIS, BRA-036013-MN-4578, BRA-035947-MN-4418 and CMSXS-633) of sweet sorghum were selected among 50 evaluated. These five accessions failed to support secondary sporulation on the "honeydew" exuded from infected florets. There was a higher concentration (%w/v) of the free oligosaccharides on the honeydew of these accessions when compared to a hybrid male-sterile grain sorghum. Therefore, a possible strategy would be seek to incorporate a sweet character into "A" lines for hybrid seed production in order to restrict secondary disease spread.
Resumo:
Compounds of cinnamic acid with manganese, zinc and lead have been prepared in aqueous solution. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction and complexometry have been used in the characterization as well as in the study of the thermal stability and interpretation concerning the thermal decomposition.
Resumo:
Solid state compounds of general formula M(DMCP)2.nH2O, where M represents Mg, Ca, Sr, Ba, and DMCP is 4-dimethylaminocinnamylidenepyruvate, and n = 1, except for Ca, where n = 2.5, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometry were used to characterize and to study the thermal decomposition of these compounds.
Resumo:
Heterobimetallic carbonyl compounds of the type [Fe(CO)4(HgX)2] (X= Cl, Br, I), which have metal-metal bonds, have been prepared in order to study their thermal stabilities as a function of the halogen coordinated to mercury atoms. The characterization of the above complexes was carried out by elemental analysis, IR and NMR spectroscopies. Their thermal behaviour has been investigated and the final product was identified by IR spectroscopy and by X-ray powder diffractogram.
Resumo:
Solid state cinnamylidenepyruvate of trivalent lanthanides (except for promethium) and yttrium, were prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometry were used to characterize and to study the thermal behavior of these compounds in a dynamic CO2 atmosphere. The results obtained showed significative differences on the thermal stability and thermal decomposition of these compounds, with regard to the thermal behavior study in a dynamic air atmosphere.