143 resultados para Racionamento, PH
Resumo:
The stabilizing free energy of ß-trypsin was determined by hydrogen ion titration. In the pH range from 3.0 to 7.0, the change in free energy difference for the stabilization of the native protein relative to the unfolded one (D D G0 titration) was 9.51 ± 0.06 kcal/mol. An isoelectric point of 10.0 was determined, allowing us to calculate the Tanford and Kirkwood electrostatic factor w. This factor presented a nonlinear behavior and indicated more than one type of titratable carboxyl groups in ß-trypsin. In fact, one class of carboxyl group with a pK = 3.91 ± 0.01 and another one with a pK = 4.63 ± 0.03 were also found by hydrogen ion titration of the protein in the folded state
Resumo:
Textile dyes bind to proteins leading to selective co-precipitation of a complex involving one protein molecule and more than one dye molecule of opposite charge in acid solutions, in a process of reversible denaturation that can be utilized for protein fractionation. In order to understand what occurs before the co-precipitation, a kinetic study using bovine ß-trypsin and sodium flavianate was carried out based on reaction progress curve techniques. The experiments were carried out using a-CBZ-L-Lys-p-nitrophenyl ester as substrate which was added to 50 mM sodium citrate buffer, pH 3.0, containing varying concentrations of ß-trypsin and dye. The reaction was recorded spectrophotometrically at 340 nm for 30 min, and the families of curves obtained were analyzed simultaneously by fitting integrated Michaelis-Menten equations. The dye used behaved as a competitive inhibitor of trypsin at pH 3.0, with Ki = 99 µM; kinetic parameters for the substrate hydrolysis were: Km = 32 µM, and kcat = 0.38/min. The competitive character of the inhibition suggests a specific binding of the first dye molecule to His-57, the only positively charged residue at the active site of the enzyme.
Resumo:
The carboxyl-terminal (CT) domain of connexin43 (Cx43) has been implicated in both hormonal and pH-dependent gating of the gap junction channel. An in vitro assay was utilized to determine whether the acidification of cell extracts results in the activation of a protein kinase that can phosphorylate the CT domain. A glutathione S-transferase (GST)-fusion protein was bound to Sephadex beads and used as a target for protein kinase phosphorylation. A protein extract produced from sheep heart was allowed to bind to the fusion protein-coated beads. The bound proteins were washed and then incubated with 32P-ATP. Phosphorylation was assessed after the proteins were resolved by SDS-PAGE. Incubation at pH 7.5 resulted in a minimal amount of phosphorylation while incubation at pH 6.5 resulted in significant phosphorylation reaction. Maximal activity was achieved when both the binding and kinase reactions were performed at pH 6.5. The protein kinase activity was stronger when the incubations were performed with manganese rather than magnesium. Mutants of Cx43 which lack the serines between amino acids 364-374 could not be phosphorylated in the in vitro kinase reaction, indicating that this is a likely target of this reaction. These results indicate that there is a protein kinase activity in cells that becomes more active at lower pH and can phosphorylate Cx43.
Resumo:
The objective of the present study was to determine if exposure of cervical mucus to air during specular examination could modify mucus pH. Detection of changes is justified because of their possible interference with sperm-mucus interaction, since an acidic pH is unfavorable to sperm penetration and is associated with infertility due to the cervical factor. Twenty women with good quality mucus were evaluated. pH measurements of ecto- and endocervical mucus were made in situ using a glass electrode after 0-, 5- and 10-min exposure to air. There was a progressive alkalinization of mucus pH. Mean values of ectocervical mucus pH were 6.91, 7.16 and 7.27, while mean values of endocervical mucus pH were 7.09, 7.34 and 7.46 at 0, 5 and 10 min, respectively. Significant differences were found between the mean values obtained at 0 and 5 min, and at 0 and 10 min (P<0.05), whereas the differences in mean values at 5 and 10 min were not significant at either site. We conclude that 5 to 10 min of exposure to atmospheric air affects cervical mucus pH in a significant way. Since tests used to evaluate sperm-mucus interaction generally have not considered this possibility, we suggest that they should be performed immediately after mucus collection in order to avoid misinterpretation of the results.
Resumo:
The present study analyzes Na+ and K+ disturbances caused by low pH in two catfish species from the Amazon River. Corydoras adolfoi inhabits ion-poor, black-stained, low pH (3.5-4.0) waters, while C. schwartzi is native to ion-rich waters at circumneutral pH. Fish were exposed to pH 3.5 Ca2+-free, and Ca2+-enriched (~500 µmol/l) water to determine the protective effects of calcium. Net Na+ and K+ fluxes were measured in the water collected from the fish experimental chambers. C. adolfoi was unable to control the Na+ efflux at low pH, exhibiting Na+ loss up to -594 ± 84 nmol g-1 h-1 during the first hour. After 3 and 6 h, net Na+ flux increased by 7- and 23-fold, respectively. In C. schwartzi, at pH 3.5, the initial high Na+ loss (-1,063 ± 73 nmol g-1 h-1) was gradually attenuated. A K+ loss occurred in both species, but remained relatively constant throughout exposure. High [Ca2+] affected ion losses in both species. C. adolfoi had 70% loss attenuation, indicating incapacity to control Na+ efflux. In C. schwartzi, elevated [Ca2+] completely prevented the Na+ losses caused by exposure to low pH. Rather different patterns were seen for K+ fluxes, with C. adolfoi showing no K+ disruption when exposed to low pH/high [Ca2+]. Thus, C. adolfoi loses Na+ during acid exposure, but has the ability to control K+ loss, while C. schwartzi controls diffusive Na+ loss but exhibits a slightly higher K+ loss. Ion balance was influenced by [Ca2+] at low pH in C. schwartzi but not in C. adolfoi.
Resumo:
Trypsin is a serino-protease with a polypeptide chain of 223 amino acid residues and contains six disulfide bridges. It is a globular protein with a predominance of antiparallel ß-sheet and helix in its secondary structure and has two domains with similar structures. We assessed the stability of ß-trypsin in the acid pH range using microcalorimetric (differential scanning calorimetry) techniques. Protein concentrations varied in the range of 0.05 to 2.30 mg/ml. Buffer solutions of 50.0 mM ß-alanine and 20.0 mM CaCl2 at different pH values (from 2.0 to 4.2) and concentrations of sorbitol (1.0 and 2.0 M), urea (0.5 M) or guanidinium hydrochloride (0.5 and 1.0 M) were used. The data suggest that we are studying the same conformational transition of the protein in all experimental situations using pH, sorbitol, urea and guanidinium hydrochloride as perturbing agents. The observed van't Hoff ratios (deltaHcal/deltaHvH) of 1.0 to 0.5 in the pH range of 3.2 to 4.2 suggest protein aggregation. In contrast, deltaHcal/deltaHvH ratios equal to one in the pH range of 2.0 to 3.2 suggest that the protein unfolds as a monomer. At pH 3.00, ß-trypsin unfolded with Tm = 54ºC and deltaH = 101.8 kcal/mol, and the change in heat capacity between the native and unfolded forms of the protein (deltaCp) was estimated to be 2.50 ± 0.07 kcal mol-1 K-1. The stability of ß-trypsin calculated at 298 K was deltaG D = 5.7 kcal/mol at pH 3.00 and deltaG D = 15.2 kcal/mol at pH 7.00, values in the range expected for a small globular protein.
Resumo:
Gastroesophageal reflux (GER) disorder was studied in children and adolescents with chronic and/or recurrent rhinosinusitis not associated with bronchial asthma. Ten children with a clinical and radiological diagnosis of chronic and/or recurrent rhinosinusitis, consecutively attended at the Pediatric Otolaryngology Outpatient Clinic, Federal University of São Paulo, were evaluated. Prolonged esophageal pH monitoring was used to investigate GER disorder. The mean age of the ten patients evaluated (eight males) was 7.4 ± 2.4 years. Two patients presented vomiting as a clinical manifestation and one patient presented retrosternal pain with a burning sensation. Twenty-four-hour esophageal pH monitoring was performed using the Sandhill apparatus. An antimony probe electrode was placed in the lower third of the esophagus, confirmed by fluoroscopy and later by a chest X-ray. The parameters analyzed by esophageal pH monitoring included: total percent time of the presence of acid esophageal pH, i.e., pH below 4 (<4.2%); total number of acid episodes (<50 episodes); number of reflux episodes longer than 5 min (3 or less), and duration of the longest reflux episode (<9.2 min). One patient (1/10, 10%) presented a 24-h esophageal pH profile compatible with GER disorder. This data suggest that an association between chronic rhinosinusitis not associated with bronchial asthma and GER disorder may exist in children and adolescents, especially in those with compatible GER disorder symptoms. In these cases, 24-h esophageal pH monitoring should be performed before indicating surgery, since the present data suggest that 10% of chronic rhinosinusitis surgeries can be eliminated.
Resumo:
The interaction between H+ extrusion via H+-ATPase and Cl- conductance was studied in the C11 clone of MDCK cells, akin to the intercalated cells of the collecting duct. Cell pH (pHi) was measured by fluorescence microscopy using the fluorescein-derived probe BCECF-AM. Control recovery rate measured after a 20 mM NH4Cl acid pulse was 0.136 ± 0.008 pH units/min (dpHi/dt) in Na+ Ringer and 0.032 ± 0.003 in the absence of Na+ (0 Na+). With 0 Na+ plus the Cl- channel inhibitor NPPB (10 µM), recovery was reduced to 0.014 ± 0.001 dpHi/dt. 8-Br-cAMP, known to activate CFTR Cl- channels, increased dpHi/dt in 0 Na+ to 0.061 ± 0.009 and also in the presence of 46 nM concanamycin and 50 µM Schering 28080. Since it is thought that the Cl- dependence of H+-ATPase might be due to its electrogenic nature and the establishment of a +PD (potential difference) across the cell membrane, the effect of 10 µM valinomycin at high (100 mM) K+ was tested in our cells. In Na+ Ringer, dpHi/dt was increased, but no effect was detected in 0 Na+ Ringer in the presence of NPPB, indicating that in intact C11 cells the effect of blocking Cl- channels on dpHi/dt was not due to an adverse electrical gradient. The effect of 100 µM ATP was studied in 0 Na+ Ringer solution; this treatment caused a significant inhibition of dpHi/dt, reversed by 50 µM Bapta. We have shown that H+-ATPase present in MDCK C11 cells depends on Cl- ions and their channels, being regulated by cAMP and ATP, but not by the electrical gradient established by electrogenic H+ transport.
Resumo:
Alterations in salivary parameters may increase the caries risk in diabetic children, but, contradictory data on this issue have been reported. The aims of this study were to compare salivary parameters (flow rate, pH and calcium concentration) between healthy and type 1 diabetes mellitus (T1DM) individuals. The sample consisted of 7- to 18-year-old individuals divided into two groups: 30 subjects with T1DM (group A) and 30 healthy control subjects (group B). Fasting glucose levels were determined. Unstimulated and stimulated saliva was collected. The pH of unstimulated saliva was measured with paper strips and an electrode. Calcium concentrations in stimulated saliva were determined with a selective electrode. Group A individuals had inadequate blood glucose control (HbA1C >9%), with means ± SD unstimulated salivary flow rate of 0.15 ± 0.1 mL/min compared to 0.36 ± 0.2 mL/min for group B (P < 0.01). Stimulated salivary flow rate was similar by both groups and above 2.0 mL/min. Saliva pH was 6.0 ± 0.8 for group A and significantly different from 7.0 ± 0.6 for group B (P < 0.01). Salivary calcium was 14.7 ± 8.1 mg/L for group A and significantly higher than 9.9 ± 6.4 mg/L for group B (P < 0.01). Except for elevated calcium concentrations in saliva, salivary parameters favoring caries such as low saliva pH and unstimulated salivary flow rate were observed in T1DM individuals.
Resumo:
Visando a aplicação industrial da caseína e de seus hidrolisados trípticos, foram estudados os efeitos da variação do pH e do tempo de hidrólise sobre suas características de solubilidade e propriedades emulsificantes. Testou-se os valores de pH de 3,0; 4,0; 5,0; 6,0; 7,0 e 8,0 e os tempos de hidrólise: 5, 10 15, 30 e 60min. Foram medidos a solubilidade, a capacidade emulsificante, o índice de atividade emulsificante, a estabilidade da emulsão, e calculdado o tamanho dos glóbulos de gordura. Os resultados obtidos para a caseína nativa indicaram que os melhores valores para estas propriedades funcionais foram encontrados em pH acima de 5,0. A hidrólise tríptica da caseína foi benéfica para sua solubilidade e capacidade emulsificante e prejudicou sua estabilidade, em todos os valores de pH e tempos de hidrólise, exceto no pH 5,0 com 5 min de reação. Por outro lado, este tratamento enzimático contribuiu para melhorar o índice de atividade emulsificante da caseína, entre valores de pH 3,0 e 5,0 e após 10 min de reação.
Resumo:
Sensory analysis was used to get an overall flavour description of a reaction mixtures containing 5'-IMP and Cysteine. Ribose/cysteine systems were used as reference systems. Results from triangle and aroma profiling show a clear correlation between the terms used and the volatile analysis described in literature for these model systems. For instance reactions at pH 3.0 and 4.5 for 5'-IMP/cysteine systems, which were described as "meaty" and "boiled meat" by panellists, presented, in the literature, the higher number of "meaty" compounds in volatile analysis (1, 7, 8, 20) .
Resumo:
No intuito de estudar o efeito do pH e da ação da tripsina sobre as propriedades emulsionantes da globina bovina, extraída pelo método da acetona acidificada, foram determinados neste trabalho, a capacidade emulsionante (EC), o índice de atividade emulsionante (EAI) e a estabilidade da emulsão (ES). Testaram-se os valores de pH de 3,0 a 8,0 e os tempos de hidrólise de 5,0 a 60 min. Os dados obtidos indicam que os maiores valores de EC e ES foram obtidos no pH 5,0 e 6,0, respectivamente, correspondente à faixa de alta solubilidade da proteína. Por outro lado, o EAI, além de apresentar um máximo no pH 3,0, foi igualmente elevado nos valores de pH 7,0 e 8,0, situados na zona onde a globina é praticamente insolúvel. A hidrólise tríptica, nas condições empregadas, contribuiu para melhorar a EC, em toda a faixa de pH estudada, enquanto que para o EAI somente foi benéfico em pH 4,0 e 5,0. No caso da ES, este tratamento enzimático não foi vantajoso, promovendo melhoras apenas no pH 7,0, onde a proteína é insolúvel, e somente após 60 min de hidrólise.
Resumo:
Visando a utilização do plasma bovino como agente funcional de alimentos, foram estudadas, na faixa de pH de 3,0 a 8,0, a solubilidade, a hidrofobicidade e a sua habilidade de formar e estabilizar emulsões. Para tal, foram determinados a capacidade emulsionante (EC), o índice de atividade emulsionante (EAI) e a estabilidade da emulsão (ES). O efeito da ação da tripsina sobre estas propriedades foi, também, verificado, tendo sido preparados cinco hidrolisados enzimáticos. Os resultados obtidos indicam que a hidrofobicidade e o EAI apresentaram um máximo em pH 3,0 e 7,0, respectivamente, enquanto que as outras propriedades praticamente não foram influenciadas pela variação de pH. A hidrólise tríptica provocou uma redução da solubilidade e da EC, não afetou o EAI e a ES, tendo contribuído para melhorar apenas a hidrofobicidade, em alguns tempos de reação.
Resumo:
Medidas reólogicas sob cisalhamento oscilatório foram realizadas em reômetro de tensão e deformação controladas com suspensões de concentrado de proteínas do soro do leite (WPC) a 10% (m/m) em água e a diferentes condições de pH (pH 4,0, 4,6 e 7,0). O processo de gelificação induzida pelo calor foi investigado, assim como as propriedades viscoelásticas dos géis formados a 80°C e daqueles formados após o decréscimo da temperatura a 20°C. Foi verificado que, em presença de teores significativos de sais, procedentes do próprio soro, a concentração usada nos experimentos foi suficiente para a formação de géis macroscópicos, e que o pH exerce papel importante na formação e na natureza estrutural dos géis.
Resumo:
O desenvolvimento de biofilmes tem crescido devido à possibilidade de substituição parcial de materiais plásticos não biodegradáveis. Proteínas e polissacarídeos têm sido utilizados para a produção de filmes com boas propriedades mecânicas. Porém, filmes a partir desses materiais apresentam alta permeabilidade ao vapor de água. Uma alternativa usada para diminuir a permeabilidade ao vapor de água dos filmes é a incorporação de substâncias hidrofóbicas na composição da solução filmogênica, porém essa incorporação não ocorre de maneira homogênea. Com o objetivo de melhorar a incorporação das substâncias hidrofóbicas (ácido esteárico e ácido capróico) na matriz protéica (gelatina) do filme foram adicionados os surfactantes (SDS e Tween 80), que são substâncias capazes de interagir com a proteína e com o ácido graxo, tornando a matriz filmogênica menos heterogênea. O efeito do pH também foi estudado, com a finalidade de observar se este exerce influência na homogeneidade da matriz filmogênica. A adição do ácido esteárico aos filmes de gelatina foi mais eficiente na redução da permeabilidade ao vapor de água do que o ácido capróico. A adição do surfactante SDS reduziu a permeabilidade ao vapor de água dos filmes contendo ácido esteárico, ou ácido capróico. O ajuste de pH nos filmes sem adição de surfactantes também produziu matrizes mais homogêneas.