131 resultados para PROTEIN ISOLATE
Resumo:
Babesia bovis is a tick-borne pathogen that remains an important constraint for the development of cattle industries in tropical and subtropical regions of the world. Effective control can be achieved by vaccination with live attenuated phenotypes of the parasite. However, these phenotypes have a number of drawbacks, which justifies the search for new, more efficient immunogens based mainly on recombinant protein technology. In the present paper, ribosomal phosphoprotein P0 from a Brazilian isolate of B. bovis was produced and evaluated with regard to conservation and antigenicity. The protein sequence displayed high conservation between different Brazilian isolates of B. bovis and several Apicomplexa parasites such as Theileria, Neospora and Toxoplasma. IgG from cattle experimentally and naturally infected with B. bovisas well as IgG1 and IgG2 from naturally infected cattle reacted with the recombinant protein. IgG from cattle experimentally infected with Babesia bigemina cross-reacted with B. bovis recombinant P0. These characteristics suggest that P0 is a potential antigen for recombinant vaccine preparations against bovine babesiosis.
Resumo:
The objective of this study is to understand the structural flexibility and curvature of the E2 protein of human papillomavirus type 18 using molecular dynamics (6 ns). E2 is required for viral DNA replication and its disruption could be an anti-viral strategy. E2 is a dimer, with each monomer folding into a stable open-faced β-sandwich. We calculated the mobility of the E2 dimer and found that it was asymmetric. These different mobilities of E2 monomers suggest that drugs or vaccines could be targeted to the interface between the two monomers.
Resumo:
Kinetoplastid membrane protein-11 (KMP-11), a protein present in all kinetoplastid protozoa, is considered a potential candidate for a leishmaniasis vaccine. A suitable leishmaniasis vaccine candidate molecule must be expressed in amastigotes, the infective stage for mammals. However, the expression of KMP-11 in Leishmania amastigotes has been a subject of controversy. We evaluated the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, of Leishmania amazonensis by immunoblotting, flow cytometry and immunocytochemistry, using a monoclonal antibody against KMP-11. We found that KMP-11 is present in promastigotes and amastigotes. In both stages, the protein was found in association with membrane structures (at the cell surface, flagellar pocket and intracellular vesicles). More importantly, its surface expression is higher in amastigotes than in promastigotes and increases during metacyclogenesis. The increased expression of KMP-11 in metacyclic promastigotes, and especially in amastigotes, indicates a role for this molecule in the parasite relationship with the mammalian host. The presence of this molecule in amastigotes is consistent with the previously demonstrated immunoprotective capacity of vaccine prototypes based on the KMP-11-coding gene and the presence of humoral and cellular immune responses to KMP-11 in Leishmania-infected humans and animals.
Resumo:
Schistosoma mansoni ATP diphosphohydrolase isoforms and potato apyrase share conserved epitopes. By enzyme-linked immunosorbent assays, elevated levels of IgM, IgG2a and IgG1 antibody reactivity against potato apyrase were observed in S. mansoni-infected BALB/c mice during the acute phase of infection, while only IgM and IgG1 antibody reactivity levels maintained elevated during the chronic phase of infection. Antibody reactivity against potato apyrase was monitored over an 11-month period in chronically-infected mice treated with oxamniquine. Eleven months later, the level of seropositive IgM decreased significantly (~30%) compared to the level found in untreated, infected mice. The level of seropositive IgG1 decreased significantly four months after treatment (MAT) (61%) and remained at this level even after 11 months. The IgG2a reactivity against potato apyrase, although unchanged during chronic phase to 11 MAT, appeared elevated again in re-infected mice suggesting a response similar to that found during the acute phase. BALB/c mouse polyclonal anti-potato apyrase IgG reacted with soluble egg antigens probably due to the recognition of parasite ATP diphosphohydrolase. This study, for the first time, showed that the IgG2a antibody from S. mansoni-infected BALB mice cross-reacts with potato apyrase and the level of IgG2a in infected mice differentiates disease phases. The results also suggest that different conserved-epitopes contribute to the immune response in schistosomiasis.
Resumo:
Human adenoviruses (HAdV) are a major cause of acute respiratory diseases (ARD), gastroenteritis, conjunctivitis and urinary infections. Between November 2000-April 2007, a total of 468 nasopharyngeal aspirate samples were collected from children with ARD at the Clinics Hospital of Uberlândia. These samples were tested by immunofluorescence assay (IFA) and 3% (14/468) tested positive for the presence of HAdV. By performing polymerase chain reaction (PCR) to detect HAdV DNA in samples that tested negative or inconclusive for all viruses identifiable by IFA (respiratory syncytial virus, parainfluenza viruses 1, 2 and 3, influenza viruses A and B and HAdV), as well as negative for rhinoviruses by reverse transcription-PCR, additional 19 cases were detected, for a total of 33 (7.1%) HAdV-positive samples. Nucleotide sequences of 13 HAdV samples were analyzed, revealing that they belonged to species B, C and E. Further analyses showed that species C (HAdV-2) was the most prevalent among the sequenced samples. To our knowledge, this is the first report describing the presence of HAdV-4 in Brazil. We also detected an isolate that was 100% identical to a part of the feline adenovirus hexon gene sequence.
Resumo:
The life cycle of the protozoan Trypanosoma cruzi exposes it to several environmental stresses in its invertebrate and vertebrate hosts. Stress conditions are involved in parasite differentiation, but little is known about the stress response proteins involved. We report here the first characterization of stress-induced protein-1 (STI-1) in T. cruzi (TcSTI-1). This co-chaperone is produced in response to stress and mediates the formation of a complex between the stress proteins HSP70 and HSP90 in other organisms. Despite the similarity of TcSTI-1 to STI-1 proteins in other organisms, its expression profile in response to various stress conditions, such as heat shock, acidic pH or nutrient starvation, is quite different. Neither polysomal mRNA nor protein levels changed in exponentially growing epimastigotes cultured under any of the stress conditions studied. Increased levels of TcSTI-1 were observed in epimastigotes subjected to nutritional stress in the late growth phase. Co-immunoprecipitation assays revealed an association between TcSTI-1 and TcHSP70 in T. cruzi epimastigotes. Immunolocalization demonstrated that TcSTI-1 was distributed throughout the cytoplasm and there was some colocalization of TcSTI-1 and TcHSP70 around the nucleus. Thus, TcSTI-1 associates with TcHSP70 and TcSTI-1 expression is induced when the parasites are subjected to stress conditions during specific growth phase.
Resumo:
Brevidensoviruses have an encapsidated, single-stranded DNA genome that predominantly has a negative polarity. In recent years, they have received particular attention due to their potential role in the biological control of pathogenic arboviruses and to their unnoticed presence in cell cultures as contaminants. In addition, brevidensoviruses may also be useful as viral vectors. This study describes the first genetic and biological characterization of a mosquito densovirus that was isolated in Brazil; moreover, we examined the phylogenetic relationship between this isolate and the other brevidensoviruses. We further demonstrate that this densovirus has the potential to be used to biologically control dengue virus (DENV) infection with in vitro co-infection experiments. The present study provides evidence that this densovirus isolate is a fast-spreading virus that affects cell growth and DENV infection.
Resumo:
Carbapenemase production is an important mechanism of carbapenem resistance among nonfermentative Gram-negative isolates. This study aimed to report the detection of blaOXA-58 gene in multiresistant clinical isolates of Acinetobacter baumannii recovered from inpatients in a public hospital. Polymerase chain reaction tests were performed to detect the blaOXA-23-like, blaOXA-24-like, blaOXA-58-like and blaOXA-51-like genes. The blaOXA-58 and blaOXA-23 genes were detected in one and three isolates, respectively. Sequencing of the blaOXA-58-like amplicon revealed 100% identity with the A. baumannii blaOXA-58 gene listed in the GenBank database. This is the first report of an OXA-58-producing A. baumannii isolate in Rio de Janeiro, Brazil.
Resumo:
A peptide (SmB2LJ; r175-194) that belongs to a conserved domain from Schistosoma mansoni SmATPDase 2 and is shared with potato apyrase, as predicted by in silico analysis as antigenic, was synthesised and its immunostimulatory property was analysed. When inoculated in BALB/c mice, this peptide induced high levels of SmB2LJ-specific IgG1 and IgG2a subtypes, as detected by enzyme linked immunosorbent assay. In addition, dot blots were found to be positive for immune sera against potato apyrase and SmB2LJ. These results suggest that the conserved domain r175-194 from the S. mansoni SmATPDase 2 is antigenic. Western blots were performed and the anti-SmB2LJ antibody recognised in adult worm (soluble worm antigen preparation) or soluble egg antigen antigenic preparations two bands of approximately 63 and 55 kDa, molecular masses similar to those predicted for adult worm SmATPDase 2. This finding strongly suggests the expression of this same isoform in S. mansoni eggs. To assess localisation of SmATPDase 2, confocal fluorescence microscopy was performed using cryostat sections of infected mouse liver and polyclonal antiserum against SmB2LJ. Positive reactions were identified on the external surface from the miracidium in von Lichtenberg's envelope and, in the outer side of the egg-shell, showing that this soluble isoform is secreted from the S. mansoni eggs.
Resumo:
The glutamate-rich protein (GLURP) is an exoantigen expressed in all stages of the Plasmodium falciparum life cycle in humans. Anti-GLURP antibodies can inhibit parasite growth in the presence of monocytes via antibody-dependent cellular inhibition (ADCI), and a major parasite-inhibitory region has been found in the N-terminal R0 region of the protein. Herein, we describe the antiplasmodial activity of anti-GLURP antibodies present in the sera from individuals naturally exposed to malaria in a Brazilian malaria-endemic area. The anti-R0 antibodies showed a potent inhibitory effect on the growth of P. falciparum in vitro, both in the presence (ADCI) and absence (GI) of monocytes. The inhibitory effect on parasite growth was comparable to the effect of IgGs purified from pooled sera from hyperimmune African individuals. Interestingly, in the ADCI test, higher levels of tumour necrosis factor alpha (TNF-α) were observed in the supernatant from cultures with higher parasitemias. Our data suggest that the antibody response induced by GLURP-R0 in naturally exposed individuals may have an important role in controlling parasitemia because these antibodies are able to inhibit the in vitro growth of P. falciparum with or without the cooperation from monocytes. Our results also indicate that TNF-α may not be relevant for the inhibitory effect on P. falciparum in vitro growth.
Resumo:
Recently, we described the improved immunogenicity of new malaria vaccine candidates based on the expression of fusion proteins containing immunodominant epitopes of merozoites and Salmonella enterica serovar Typhimurium flagellin (FliC) protein as an innate immune agonist. Here, we tested whether a similar strategy, based on an immunodominant B-cell epitope from malaria sporozoites, could also generate immunogenic fusion polypeptides. A recombinant His6-tagged FliC protein containing the C-terminal repeat regions of the VK210 variant of Plasmodium vivax circumsporozoite (CS) protein was constructed. This recombinant protein was successfully expressed in Escherichia coli as soluble protein and was purified by affinity to Ni-agarose beads followed by ion exchange chromatography. A monoclonal antibody specific for the CS protein of P. vivax sporozoites (VK210) was able to recognise the purified protein. C57BL/6 mice subcutaneously immunised with the recombinant fusion protein in the absence of any conventional adjuvant developed protein-specific systemic antibody responses. However, in mice genetically deficient in expression of TLR5, this immune response was extremely low. These results extend our previous observations concerning the immunogenicity of these recombinant fusion proteins and provide evidence that the main mechanism responsible for this immune activation involves interactions with TLR5, which has not previously been demonstrated for any recombinant FliC fusion protein.