158 resultados para PHOSPHOINOSITIDE HYDROLYSIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sertoli cells have been shown to be targets for extracellular purines such as ATP and adenosine. These purines evoke responses in Sertoli cells through two subtypes of purinoreceptors, P2Y2 and P A1. The signals to purinoreceptors are usually terminated by the action of ectonucleotidases. To demonstrate these enzymatic activities, we cultured rat Sertoli cells for four days and then used them for different assays. ATP, ADP and AMP hydrolysis was estimated by measuring the Pi released using a colorimetric method. Adenosine deaminase activity (EC 3.5.4.4) was determined by HPLC. The cells were not disrupted after 40 min of incubation and the enzymatic activities were considered to be ectocellularly localized. ATP and ADP hydrolysis was markedly increased by the addition of divalent cations to the reaction medium. A competition plot demonstrated that only one enzymatic site is responsible for the hydrolysis of ATP and ADP. This result indicates that the enzyme that acts on the degradation of tri- and diphosphate nucleosides on the surface of Sertoli cells is a true ATP diphosphohydrolase (EC 3.6.1.5) (specific activities of 113 ± 6 and 21 ± 2 nmol Pi mg-1 min-1 for ATP and ADP, respectively). The ecto-5'-nucleotidase (EC 3.1.3.5) and ectoadenosine deaminase activities (specific activities of 32 ± 2 nmol Pi mg-1 min-1 for AMP and 1.52 ± 0.13 nmol adenosine mg-1 min-1, respectively) were shown to be able to terminate the effects of purines and may be relevant for the physiological control of extracellular levels of nucleotides and nucleosides inside the seminiferous tubules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The opportunistic bacterium Proteus mirabilis secretes a metalloprotease, ZapA, considered to be one of its virulence factors due to its IgA-degrading activity. However, the substrate specificity of this enzyme has not yet been fully characterized. In the present study we used fluorescent peptides derived from bioactive peptides and the oxidized ß-chain of insulin to determine the enzyme specificity. The bradykinin- and dynorphin-derived peptides were cleaved at the single bonds Phe-Ser and Phe-Leu, with catalytic efficiencies of 291 and 13 mM/s, respectively. Besides confirming already published cleavage sites, a novel cleavage site was determined for the ß-chain of insulin (Val-Asn). Both the natural and the recombinant enzyme displayed the same broad specificity, demonstrated by the presence of hydrophobic, hydrophilic, charged and uncharged amino acid residues at the scissile bonds. Native IgA, however, was resistant to hydrolysis by ZapA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effects of adenosine on prolactin (PRL) secretion from rat anterior pituitaries incubated in vitro. The administration of 5-N-methylcarboxamidoadenosine (MECA), an analog agonist that preferentially activates A2 receptors, induced a dose-dependent (1 nM to 1 µM) increase in the levels of PRL released, an effect abolished by 1,3-dipropyl-7-methylxanthine, an antagonist of A2 adenosine receptors. In addition, the basal levels of PRL secretion were decreased by the blockade of cyclooxygenase or lipoxygenase pathways, with indomethacin and nordihydroguaiaretic acid (NDGA), respectively. The stimulatory effects of MECA on PRL secretion persisted even after the addition of indomethacin, but not of NDGA, to the medium. MECA was unable to stimulate PRL secretion in the presence of dopamine, the strongest inhibitor of PRL release that works by inducing a decrease in adenylyl cyclase activity. Furthermore, the addition of adenosine (10 nM) mimicked the effects of MECA on PRL secretion, an effect that persisted regardless of the presence of LiCl (5 mM). The basal secretion of PRL was significatively reduced by LiCl, and restored by the concomitant addition of both LiCl and myo-inositol. These results indicate that PRL secretion is under a multifactorial regulatory mechanism, with the participation of different enzymes, including adenylyl cyclase, inositol-1-phosphatase, cyclooxygenase, and lipoxygenase. However, the increase in PRL secretion observed in the lactotroph in response to A2 adenosine receptor activation probably was mediated by mechanisms involving regulation of adenylyl cyclase, independent of membrane phosphoinositide synthesis or cyclooxygenase activity and partially dependent on lipoxygenase arachidonic acid-derived substances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trehalose biosynthesis and its hydrolysis have been extensively studied in yeast, but few reports have addressed the catabolism of exogenously supplied trehalose. Here we report the catabolism of exogenous trehalose by Candida utilis. In contrast to the biphasic growth in glucose, the growth of C. utilis in a mineral medium with trehalose as the sole carbon and energy source is aerobic and exhibits the Kluyver effect. Trehalose is transported into the cell by an inducible trehalose transporter (K M of 8 mM and V MAX of 1.8 µmol trehalose min-1 mg cell (dry weight)-1. The activity of the trehalose transporter is high in cells growing in media containing trehalose or maltose and very low or absent during the growth in glucose or glycerol. Similarly, total trehalase activity was increased from about 1.0 mU/mg protein in cells growing in glucose to 39.0 and 56.2 mU/mg protein in cells growing in maltose and trehalose, respectively. Acidic and neutral trehalase activities increased during the growth in trehalose, with neutral trehalase contributing to about 70% of the total activity. In addition to the increased activities of the trehalose transporter and trehalases, growth in trehalose promoted the increase in the activity of alpha-glucosidase and the maltose transporter. These results clearly indicate that maltose and trehalose promote the increase of the enzymatic activities necessary to their catabolism but are also able to stimulate each other's catabolism, as reported to occur in Escherichia coli. We show here for the first time that trehalose induces the catabolism of maltose in yeast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apoptosis and necrosis are two distinct forms of cell death that can occur in response to different agents and stress conditions. In order to verify if the oxidative stress induced by dietary selenium and vitamin E deficiencies can lead muscle cells to apoptosis, one-day-old chicks were reared using diets differing in their vitamin E (0 or 10 IU/kg) and selenium (0 or 0.15 ppm) supplementation. Chick skeletal muscle tissue was obtained from 28-day-old animals and used to verify apoptosis occurrence based on caspase activity detection and DNA fragmentation. Antioxidant deficiency significantly increased caspase-like activity assessed by the hydrolysis of fluorogenic peptide substrates (Abz-peptidyl-EDDnp) at lambdaexc = 320 nm and lambdaem = 420 nm. Proteolytic activation was not accompanied by typical internucleosomal DNA fragmentation detected by field inversion gel electrophoresis. Although the general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethyl ketone (Z-VAD-fmk) (0 to 80 muM) did not block caspase-like activity when preincubated for 30 min with muscle homogenates, the hydrolyzed substrates presented the same cleavage profile in HPLC (at the aspartic acid residue) when incubated with the purified recombinant enzyme caspase-3. These data indicate that oxidative stress causes caspase-like activation in muscle cells and suggest that cell death associated with exudative diathesis (dietary deficiency of selenium and vitamin E) can follow the apoptotic pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml) on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates) reduced (1.2 to 3.0 times) the catalytic efficiency of kallikrein (in a nanomolar range) on the hydrolysis of plasminogen (0.3 to 1.8 µM) and increased (1.9 to 7.7 times) the enzyme efficiency in factor XII (0.1 to 10 µM) activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times) kallikrein inhibition by antithrombin (1.4 µM), while chondroitin 4- and 6-sulfates reduced it (1.3 times). Heparin and heparan sulfate increased (1.4 times) the enzyme inhibition by the C1-inhibitor (150 nM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A procedure is described for the rapid determination of the intra-erythrocyte concentration of 6-mercaptopurine (6-MP) and its metabolites, 6-thioguanine nucleotides (6-TGN) and 6-methylmercaptopurine (6-MMP). Erythrocytes (8 x 10(8) cells) in 350 µl Hanks solution containing 7.5 mg dithiothreitol were treated with 50 µl 70% perchloric acid. The precipitate was removed by centrifugation (13,000 g) and the supernatant hydrolyzed at 100°C for 45 min. After cooling, 100 µl was analyzed directly by HPLC using a Radialpack Resolve C18 column eluted with methanol-water (7.5:92.5, v/v) containing 100 mM triethylamine. 6-TG, 6-MP and the hydrolysis product of 6-MMP, 4-amino-5-(methylthio)carbonyl imidazole, were monitored at 342, 322 and 303 nm using a Shimadzu SPD-M10A diode array UV detector. The analytes eluted at 5.3, 6.0 and 10.2 min, respectively. The calibration curves were linear (r² > 0.998), and the analytical recoveries were 73.2% for 6-TG, 119.1% for 6-MP and 97.4% for 6-MMP. The intra- and inter-assay variations were highest for 6-MP (9.6 and 14.3%, respectively). The lowest detectable concentrations were 3, 3 and 25 pmol/8 x 10(8) erythrocytes for 6-TG, 6-MP and 6-MMP, respectively. The quantification limits (coefficients of variation <15%) were 8, 10 and 70 pmol/8 x 10(8) erythrocytes for 6-TG, 6-MP and 6-MMP, respectively. The method was applied to the analysis of 183 samples from 36 children under chemotherapy for acute lymphoblastic leukemia. The concentrations of the metabolites in the red cells of the patients ranged from 0 to 1934 pmol/8 x 10(8) erythrocytes for 6-TGN, and from 0 to 105.8 and 0 to 45.9 nmol/8 x 10(8) erythrocytes for 6-MP and 6-MMP, respectively. The procedure gave results that were in agreement with those obtained with other methods designed to detect cases of non-compliance with treatment, including patient interviews and medical evaluation, among others, demonstrating its applicability to monitoring the treatment of leukemic children.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deficiency of the A isoenzyme of ß-hexosaminidase (Hex) produced by different mutations of the gene that codes for the alpha subunit (Tay-Sachs disease) has two variants with enzymological differences: the B variant consists of the absence of Hex A isoenzyme and the B1 variant produces an inactive Hex A isoenzyme for the hydrolysis of the GM2 ganglioside and synthetic substrates with negative charge. In contrast to the early childhood form of the B variant, the B1 variant appears at a later clinical stage (3 to 7 years of age) with neurodegenerative symptoms leading to the death of the patient in the second decade of life. The most frequent mutation responsible for the GM2 gangliosidosis B1 variant is R178H, which has a widespread geographic and ethnic distribution. The highest incidence has been described in Portugal, which has been suggested as the point of origin of this mutation. Biochemical characterization of this lysosomal disease is carried out using negatively charged synthetic alpha subunit-specific sulfated substrates, since Hex A isoenzyme heat-inactivation assays are not applicable. However, the determination of the apparent activation energy of Hex using the neutral substrate 3,3'-dichlorophenolsulfonphthaleinyl N-acetyl-ß-D-glucosaminide, may offer a valid alternative. The presence of an alpha subunit in the alphaß heterodimer Hex A means that its activation energy (41.8 kJ/mol) is significantly lower than that of the ßß homodimer Hex B (75.1 kJ/mol); however, as mutation inactivates the alpha subunit, the Hex A of the B1 variant presents an activation energy that is similar to that of the Hex B isoenzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streptokinase, a 47-kDa protein isolated and secreted by most group A, C and G ß-hemolytic streptococci, interacts with and activates human protein plasminogen to form an active complex capable of converting other plasminogen molecules to plasmin. Our objective was to compare five streptokinase formulations commercially available in Brazil in terms of their activity in the in vitro tests of euglobulin clot formation and of the hydrolysis of the plasmin-specific substrate S-2251™. Euglobulin lysis time was determined using a 96-well microtiter plate. Initially, human thrombin (10 IU/ml) and streptokinase were placed in individual wells, clot formation was initiated by the addition of plasma euglobulin, and turbidity was measured at 340 nm every 30 s. In the second assay, plasminogen activation was measured using the plasmin-specific substrate S-2251™. Streptase™ was used as the reference formulation because it presented the strongest fibrinolytic activity in the euglobulin lysis test. The Unitinase™ and Solustrep™ formulations were the weakest, showing about 50% activity compared to the reference formulation. All streptokinases tested activated plasminogen but significant differences were observed. In terms of total S-2251™ activity per vial, Streptase™ (75.7 ± 5.0 units) and Streptonase™ (94.7 ± 4.6 units) had the highest activity, while Unitinase™ (31.0 ± 2.4 units) and Strek™ (32.9 ± 3.3 units) had the weakest activity. Solustrep™ (53.3 ± 2.7 units) presented intermediate activity. The variations among the different formulations for both euglobulin lysis test and chromogenic substrate hydrolysis correlated with the SDS-PAGE densitometric results for the amount of 47-kDa protein. These data show that the commercially available clinical streptokinase formulations vary significantly in their in vitro activity. Whether these differences have clinical implications needs to be investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiotensin-(1-7) (Ang-(1-7)) is now considered to be a biologically active member of the renin-angiotensin system. The functions of Ang-(1-7) are often opposite to those attributed to the main effector component of the renin-angiotensin system, Ang II. Chronic administration of angiotensin-converting enzyme inhibitors (ACEI) increases 10- to 25-fold the plasma levels of this peptide, suggesting that part of the beneficial effects of ACEI could be mediated by Ang-(1-7). Ang-(1-7) can be formed from Ang II or directly from Ang I. Other enzymatic pathways for Ang-(1-7) generation have been recently described involving the novel ACE homologue ACE2. This enzyme can form Ang-(1-7) from Ang II or less efficiently by the hydrolysis of Ang I to Ang-(1-9) with subsequent Ang-(1-7) formation. The biological relevance of Ang-(1-7) has been recently reinforced by the identification of its receptor, the G-protein-coupled receptor Mas. Heart and blood vessels are important targets for the formation and actions of Ang-(1-7). In this review we will discuss recent findings concerning the biological role of Ang-(1-7) in the heart and blood vessels, taking into account aspects related to its formation and effects on these tissues. In addition, we will discuss the potential of Ang-(1-7) and its receptor as a target for the development of new cardiovascular drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A continuous assay using internally quenched fluorescent peptides with the general sequence Abz-peptidyl-(Dnp)P-OH (Abz = ortho-aminobenzoic acid; Dnp = 2,4-dinitrophenyl) was optimized for the measurement of angiotensin I-converting enzyme (ACE) in human plasma and rat tissues. Abz-FRK(Dnp)P-OH, which was cleaved at the Arg-Lys bond by ACE, was used for the enzyme evaluation in human plasma. Enzymatic activity was monitored by continuous recording of the fluorescence (lambdaex = 320 nm and lambdaem = 420 nm) at 37ºC, in 0.1 M Tris-HCl buffer, pH 7.0, with 50 mM NaCl and 10 µM ZnCl2. The assays can be performed directly in the cuvette of the fluorimeter and the hydrolysis followed for 5 to 10 min. ACE measurements in the plasma of 80 healthy patients with Hip-His-Leu and with Abz-FRK(Dnp)P-OH correlated closely (r = 0.90, P < 0.001). The specificity of the assay was demonstrated by the complete inhibition of hydrolysis by 0.5 µM lisinopril or captopril. Abz-FRK(Dnp)P-OH cleavage by ACE was monitored in rat lung, kidney, heart, and liver homogenates in the presence of a cocktail of inhibitors containing trans-epoxy-succinyl-L-leucylamido-(4-guanido)-butene, pepstatin, phenyl-methylsulfonyl fluoride, N-tosyl-L-phenylalanyl-chloromethyl ketone, and N-tosyl-lysyl-chloromethyl ketone to prevent undesirable hydrolysis. ACE activity in lung, heart and kidney homogenates, but not in liver homogenates, was completely abolished by 0.5 µM lisinopril or captopril. The advantages of the method are the procedural simplicity and the high sensitivity providing a rapid assay for ACE determinations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study describes the main characteristics of the proteolytic activities of the velvetbean caterpillar, Anticarsia gemmatalis Hübner, and their sensitivity to proteinase inhibitors and activators. Midguts of last instar larvae reared on an artificial diet were homogenized in 0.15 M NaCl and centrifuged at 14,000 g for 10 min at 4ºC and the supernatants were used in enzymatic assays at 30ºC, pH 10.0. Basal total proteolytic activity (azocasein hydrolysis) was 1.14 ± 0.15 absorbance variation min-1 mg protein-1, at 420 nm; basal trypsin-like activity (N-benzoyl-L-arginine-p-nitroanilide, BApNA, hydrolysis) was 0.217 ± 0.02 mmol p-nitroaniline min-1 mg protein-1. The maximum proteolytic activities were observed at pH 10.5 using azocasein and at pH 10.0 using BApNA, this pH being identical to the midgut pH of 10.0. The maximum trypsin-like activity occurred at 50ºC, a temperature that reduces enzyme stability to 80 and 60% of the original, when pre-incubated for 5 and 30 min, respectively. Phenylmethylsulfonyl fluoride inhibited the proteolytic activities with an IC50 of 0.39 mM for azocasein hydrolysis and of 1.35 mM for BApNA hydrolysis. Benzamidine inhibited the hydrolysis with an IC50 of 0.69 and 0.076 mM for azocasein and BApNA, respectively. The absence of cysteine-proteinases is indicated by the fact that 2-mercaptoethanol and L-cysteine did not increase the rate of azocasein hydrolysis. These results demonstrate the presence of serine-proteinases and the predominance of trypsin-like activity in the midgut of Lepidoptera insects, now also detected in A. gemmatalis, and suggest this enzyme as a major target for pest control based on disruption of protein metabolism using proteinase inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study evaluated the acute effect of the intraperitoneal (ip) administration of a whey protein hydrolysate (WPH) on systolic arterial blood pressure (SBP) and renal sodium handling by conscious spontaneously hypertensive rats (SHR). The ip administration of WPH in a volume of 1 ml dose-dependently lowered the SBP in SHR 2 h after administration at doses of 0.5 g/kg (0.15 M NaCl: 188.5 ± 9.3 mmHg vs WPH: 176.6 ± 4.9 mmHg, N = 8, P = 0.001) and 1.0 g/kg (0.15 M NaCl: 188.5 ± 9.3 mmHg vs WPH: 163.8 ± 5.9 mmHg, N = 8, P = 0.0018). Creatinine clearance decreased significantly (P = 0.0084) in the WPH-treated group (326 ± 67 µL min-1 100 g body weight-1) compared to 0.15 M NaCl-treated (890 ± 26 µL min-1 100 g body weight-1) and captopril-treated (903 ± 72 µL min-1 100 g body weight-1) rats. The ip administration of 1.0 g WPH/kg also decreased fractional sodium excretion to 0.021 ± 0.019% compared to 0.126 ± 0.041 and 0.66 ± 0.015% in 0.15 M NaCl and captopril-treated rats, respectively (P = 0.033). Similarly, the fractional potassium excretion in WPH-treated rats (0.25 ± 0.05%) was significantly lower (P = 0.0063) than in control (0.91 ± 0.15%) and captopril-treated rats (1.24 ± 0.30%), respectively. The present study shows a decreased SBP in SHR after the administration of WPH associated with a rise in tubule sodium reabsorption despite an angiotensin I-converting enzyme (ACE)-inhibiting in vitro activity (IC50 = 0.68 mg/mL). The present findings suggest a pathway involving ACE inhibition but measurements of plasma ACE activity and angiotensin II levels are needed to support this suggestion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endochondral calcification involves the participation of matrix vesicles (MVs), but it remains unclear whether calcification ectopically induced by implants of demineralized bone matrix also proceeds via MVs. Ectopic bone formation was induced by implanting rat demineralized diaphyseal bone matrix into the dorsal subcutaneous tissue of Wistar rats and was examined histologically and biochemically. Budding of MVs from chondrocytes was observed to serve as nucleation sites for mineralization during induced ectopic osteogenesis, presenting a diameter with Gaussian distribution with a median of 306 ± 103 nm. While the role of tissue-nonspecific alkaline phosphatase (TNAP) during mineralization involves hydrolysis of inorganic pyrophosphate (PPi), it is unclear how the microenvironment of MV may affect the ability of TNAP to hydrolyze the variety of substrates present at sites of mineralization. We show that the implants contain high levels of TNAP capable of hydrolyzing p-nitrophenylphosphate (pNPP), ATP and PPi. The catalytic properties of glycosyl phosphatidylinositol-anchored, polidocanol-solubilized and phosphatidylinositol-specific phospholipase C-released TNAP were compared using pNPP, ATP and PPi as substrates. While the enzymatic efficiency (k cat/Km) remained comparable between polidocanol-solubilized and membrane-bound TNAP for all three substrates, the k cat/Km for the phosphatidylinositol-specific phospholipase C-solubilized enzyme increased approximately 108-, 56-, and 556-fold for pNPP, ATP and PPi, respectively, compared to the membrane-bound enzyme. Our data are consistent with the involvement of MVs during ectopic calcification and also suggest that the location of TNAP on the membrane of MVs may play a role in determining substrate selectivity in this micro-compartment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Store-operated Ca2+ entry plays an important role in Ca2+ homeostasis in cells but the mechanisms of control of these channels are not completely understood. We describe an investigation of the role of the CD38-cyclic-ADP-ribose (cADPR)-ryanodine-channel (RyR) signaling pathway in store-operated Ca2+ entry in human smooth muscle. We observed that human myometrial cells have a functional store-operated Ca2+ entry mechanism. Furthermore, we observed the presence of transient receptor potential 1, 3, 4, 5, and 6 ion channels in human myometrial cells. Store-operated Ca2+ transient was inhibited by at least 50-70% by several inhibitors of the RyR, including ryanodine (10 µM), dantrolene (10 µM), and ruthenium red (10 µM). Furthermore, the cell permeable inhibitor of the cADPR-system, 8-Br-cADPR (100 µM), is a potent inhibitor of the store-operated entry, decreasing the store operated entry by 80%. Pre-incubation of cells with 100 µM cADPR and the hydrolysis-resistant cADPR analog 3-deaza-cADPR (50 µM), but not with ADP-ribose (ADPR) leads to a 1.6-fold increase in the store-operated Ca2+ transient. In addition, we observed that nicotinamide (1-10 mM), an inhibitor of cADPR synthesis, also leads to inhibition of the store-operated Ca2+ transient by 50-80%. Finally, we observed that the transient receptor potential channels, RyR, and CD38 can be co-immunoprecipitated, indicating that they interact in vivo. Our observations clearly implicate the CD38-cADPR-ryanodine signaling pathway in the regulation of store-operated Ca2+ entry in human smooth muscle cells.