192 resultados para NITROGEN UPTAKE
Resumo:
The objective of this study was to establish critical values of the N indices, namely soil-plant analysis development (SPAD), petiole sap N-NO3 and organic N in the tomato leaf adjacent to the first cluster (LAC), under soil and nutrient solution conditions, determined by different statistical approaches. Two experiments were conducted in randomized complete block design with four repli-cations. Tomato plants were grown in soil, in 3 L pot, with five N rates (0, 100, 200, 400 and 800 mg kg-1) and in solution at N rates of 0, 4, 8, 12 and 16 mmol L-1. Experiments in nutrient solution and soil were finished at thirty seven and forty two days after transplanting, respectively. At those times, SPAD index and petiole sap N-NO3 were evaluated in the LAC. Then, plants were harvested, separated in leaves and stem, dried at 70ºC, ground and weighted. The organic N was determined in LAC dry matter. Three statistical procedures were used to calculate critical N values. There were accentuated discrepancies for critical values of N indices obtained with plants grown in soil and nutrient solution as well as for different statistical procedures. Critical values of nitrogen indices at all situations are presented.
Resumo:
The aim of this work was to investigate the effect of water stress on N2 fixation and nodule structure of two common bean (Phaseolus vulgaris L.) cultivars Carioca and EMGOPA-201. Plants were harvested after five and eight days of water stress. Carioca had lower nodule dry weight on both water stress periods; shoot dry weight was lower at five days water stress and did not differ from control after eight days stress. Both cultivars had lower nitrogenase activity than control after five and eight days water stress. For both cultivars, after eight days stress bacteroid membranes were damaged. Carioca presented more pronounced damage to infected tissue, with host cell vacuolation and loss of the peribacteroid membrane at five days after stress; at eight days after stress, there was degradation of cytoplasm host cells and senescence of bacteroids, with their release into intercellular spaces. Intensity of immunogold-labeling of intercellular cortical glycoprotein with the monoclonal antibodies MAC 236/265 was different for both cultivars.
Resumo:
The objective of this work was to study the effects of fire on net N mineralization and soil microbial biomass in burned and unburned cerrado stricto sensu sites. The study was carried out from April 1998 to April 2000. The pH values were significantly higher in the burned site while soil moisture content was significantly higher in the unburned site (P<0.05). The soil C/N ratio was 22/1 and the available NO3-N ranged between 1.5 and 2.8 mg kg-¹ dry weight. However, the NH4-N concentration ranged between 3 and 34 mg kg-1 dry weight in the burned site and between 3 and 22 mg kg-1 dry weight in the unburned site. The NH4-N increased after fire, but no significant changes were observed for NO3-N (P<0.05). The NO3-N accumulation occurred in short periods during the rainy season. The rates of net N mineralization increased during the rainy season while reductions in soil microbial biomass were observed at both sites. This suggested that the peak in microbial activities occurred with the first rain events, with an initial net immobilization followed by net mineralization. Both sites presented the same pattern for mineralization/immobilization, however, the amount of inorganic-N cycled annually in unburned site was 14.7 kg ha-1 per year while the burned site presented only 3.8 kg ha-¹ of inorganic-N, one year after the burning.
Resumo:
Nitrogen supply and plant population are basic parameters for cereal-legume intercropping. In order to study plant population and nitrogen fertilizer effects on yield and yield efficiency of maize-bean intercropping, a field experiment was established. Three bean plant populations and three nitrogen levels were used. Maize dry matter accumulation decreased with increases in bean plant population. Competitive effect of intercrop beans on maize yields was high at higher plant populations, being decreased by nitrogen fertilizer; application of 50 kg ha-1 N was very efficient in increasing maize cob yield. Intercropping significantly decreased harvest index of beans in all plant population and nitrogen fertilizer situations. The efficiency of intercropping, compared to sole cropping, was evidenced by the values obtained for Land Equivalent Ratio (LER) for biomass, cob and pod yields that increased with increases in bean plant populations and nitrogen fertilizer levels.
Sweet orange trees grafted on selected rootstocks fertilized with nitrogen, phosphorus and potassium
Resumo:
The majority of citrus trees in Brazil are grafted on 'Rangpur lime' (Citrus limonia Osb.) rootstock. Despite its good horticultural performance, search for disease tolerant rootstock varieties to improve yield and longevity of citrus groves has increased. The objective of this work was to evaluate yield efficiency of sweet oranges on different rootstocks fertilized with N, P, and potassium. Tree growth was affected by rootstock varieties; trees on 'Swingle' citrumelo [Poncirus trifoliata (L.) Raf. × C. paradisi Macf.] presented the smallest canopy (13.3 m³ in the fifth year after tree planting) compared to those on 'Rangpur lime' and 'Cleopatra' mandarin [C. reshni (Hayata) hort. ex Tanaka] grown on the same grove. Although it was observed an overall positive relationship between canopy volume and fruit yield (R² = 0.95**), yield efficiency (kg m-3) was affected by rootstocks, which demonstrated 'Rangpur lime' superiority in relation to Cleopatra. Growth of citrus trees younger than 5-yr-old might be improved by K fertilization rates greater than currently recommended in Brazil, in soils with low K and subjected to nutrient leaching losses.
Resumo:
Chemical fertilisers are rarely avaiable to poor farmers, for whom the nitrogen (N) is often the most limiting element for cereal grain production. The objective of this study was to quantify the contribution of biological nitrogen fixation (BNF) to groundnut (Arachis hypogaea) and velvet bean (Mucuna pruriens) crops using the 15N natural abundance (delta15N) technique and to determine their residual effect and that of a natural fallow, on growth and N accumulation by two rustic maize varieties. The contribution of BNF calculated from delta15N data was 40.9, 59.6 and 30.9 kg ha-1, for groundnut, velvet bean and the natural fallow, respectively. The only legume grain harvested was from the groundnut, which yielded approximately 1.000 kg ha-1. The subsequent maize varieties ("Sol de Manhã" and "Caiana Sobralha") yielded between 1.958 and 2.971 kg ha-1, and were higher after velvet bean for both maize varieties and "Sol da Manhã" groundnut, followed by "Caiana" after groundnut and, finally, the natural fallow. For a small-holder producer the most attractive system is the groundnut followed by maize, as, in this treatment, both groundnut and maize grain harvest are possible. However, a simple N balance calculation indicated that the groundnut-maize sequence would, in the long term, deplete soil N reserves, while the velvet bean-maize sequence would lead to a build up of soil nitrogen.
Resumo:
The objectives of this study were to evaluate nitrogen utilization by sugarcane ratoon from two sources, applied urea and sugarcane straw covering soil surface (trash blanket), besides the recovery of N from both sources in the soil-plant system. The following treatments were established in a randomized block design with four replicates: T1, vinasse-urea (100 kg ha-1 of urea-N) mixture applied on the total area of the soil covered with cane trash labeled with 15N; T2, vinasse-urea mixture (urea labeled with 15N; 100 kg ha-1 of urea-N) applied on the total area of the soil covered with non-labeled sugarcane trash; and T3, urea-15N (100 kg ha-1 of urea-N) applied in furrows at both sides of cane rows, with previous surface application of vinasse, onto soil without trash covering. The vinasse was applied at a rate of 100 m³ ha-1 in all treatments. The experiment was carried out on a Yellow Red Podzolic soil (Paleudalf), from October 1997 to August 1998, in Piracicaba, SP, Brazil. The nitrogen use efficiency of urea by the sugarcane ratoon was 21%, while that of the sugarcane straw was 9%. The main contributions of N from sugarcane trash, during one cycle, are the preservation and increase of the organic N in soil. The tendency for a lower accumulation of urea-N in the sugarcane plant, in the soil surface covered with sugarcane residue, was compensated by the assimilation of N from trash mineralization. Nitrogen derived from cane trash was more available to plants in the second half of the ratoon cycle
Resumo:
The objective of this work was to evaluate the response of rangpur lime (Citrus limonia) to arbuscular mycorrhiza (Glomus intraradices), under P levels ranging from low to excessive. Plants were grown in three levels of soluble P (25, 200 and 1,000 mg kg-1), either inoculated with Glomus intraradices or left noninoculated, evaluated at 30, 60, 90, 120 and 150 days after transplanting (DAT). Total dry weight, shoot P concentration and specific P uptake by roots increased in mycorrhizal plants with the doses of 25 and 200 mg kg-1 P at 90 DAT. With 1,000 mg kg-1 P, mycorrhizal plants had a transient growth depression at 90 and 120 DAT, and nonmycorrhizal effects on P uptake at any harvesting period. Root colonization and total external mycelium correlated positively with shoot P concentration and total dry weight at the two lowest P levels. Although the highest P level decreased root colonization, it did not affect total external mycelium to the same extent. As a result, a P availability imbalance affected negatively the mycorrhizal symbiosis and, consequently, the plant growth.
Resumo:
The objective of this study was to evaluate potato plant growth and macronutrient uptake, as affected by soil tillage methods, in sprinkle and drip irrigated experiments. Eight treatments were set: T1, no tillage, except for furrowing before planting; T2, one subsoiling (SS); T3, twice rotary hoeing (RH); T4, one disc plowing (DP) + twice disc harrow leveling (DL); T5, 1DP + 2DL + 1RH; T6, 1DP + 2DL + 2RH; T7, 1SS + T6; T8, one moldboard plowing (MP) + 2DL. Treatments were arranged in a randomized block design with four replications. In both irrigation systems, plants presented higher emergence velocity index (EVI), when the soil was not tillaged, and the EVI was inversely related to the maximum tuber dry mass production. In both experiments, a functional direct relationship was found between the leaf area index and maximum tuber dry mass yield. The growth of plant organs (tuber, leaf, stem and root) and the macronutrient (N, P, K, Ca and Mg) contents in potato plant responded positively to a deeper soil revolving caused by plowing, especially with moldboard plow.
Resumo:
The objective of this work was to evaluate the effect of drought and nitrogen (N) stresses on stomatal conductance of three maize cultivars grown in the field. The stomatal conductance of Sol da Manhã variety (BRS 4157) and Pioneer 6875 hybrid, under drought and high N, was lower than under drought and low N, which indicates drought tolerance, since these cultivars did not exhibit reduction in grain yield by drought, as observed for Amarelão variety, which flowered under more severe drought. 'Sol da Manhã' exhibited shorter anthesis-silking interval under high N than under low N, an additional indication of tolerance.
Resumo:
This study aimed to genetically characterize four new Rhizobium strains, and to evaluate their nodulation and fixation capacity compared to commercial strains and to native rhizobia population of a Brazilian Rhodic Hapludox. Two experiments were carried out in randomized blocks design, under greenhouse conditions, in 2007. In the first experiment, the nodulation and nitrogen fixation capacity of new strains were evaluated, in comparison to the commercial strains CIAT-899 and PRF-81 and to native soil population. It was carried out in plastic tubes filled with vermiculite. DNA extractions and PCR sequencing of the intergenic space were made from the isolated pure colonies, in order to genetically characterize the strains and the native rhizobia population. In the second experiment, the nodulation and productivity of common beans Perola cultivar were determined, with the use of evaluated strains, alone or in mixture with PRF-81 strain. It was carried out in pots filled with soil. The native soil population was identified as Rhizobium sp. and was inefficient in nitrogen fixation. Three different Rhizobium species were found among the four new strains. The LBMP-4BR and LBMP-12BR new strains are among the ones with greatest nodulation and fixation capacity and exhibit differential responses when mixed to PRF-81.
Resumo:
The objective of this work was to evaluate the change in soil C and N mineralization due to successive pig slurry application under conventional tillage (CT) and no tillage (NT) systems. The experiment was carried out in a clayey Latossolo Vermelho eutrófico (Rhodic Eutrudox) in Palotina, PR, Brazil. Increasing doses of pig slurry (0, 30, 60 and 120 m³ ha-1 per year) were applied in both tillage systems, with three replicates. Half of the pig slurry was applied before summer soil preparation, and the other half before the winter crop season. The areas were cultivated with soybean (Glycine max L.) and maize (Zea mays L.) in the summers of 1998 and 1999, respectively, and with wheat (Triticum sativum Lam.) in the winters of both years. Soil samples were collected at 0-5, 5-10, and 10-20 cm depths. Under both CT and NT systems, pig slurry application increased C and N mineralization. However, increasing pig slurry additions decreased the C to N mineralization ratio. Under the NT system, C and N mineralization was greater than in CT system.
Resumo:
The objective of this work was to evaluate the effect on forage yield of sowing winter forage species before and after soybean harvest, at different nitrogen application levels. The experiment was set out in a randomized block design with a strip-split plot arrangement, and three replicates. Sowing methods (18 days before soybean harvest and six days after soybean harvest) were allocated in the main plots, and the combination among forage species (Avena strigosa cv. IAPAR 61 + Lolium multiflorum; A. strigosa cv. Comum + L. multiflorum; A. strigosa cv. Comum + L. multiflorum + Vicia villosa; A. strigosa cv. Comum + L. multiflorum + Raphanus sativus; and L. multiflorum) and nitrogen levels (0, 140, 280 and 420 kg ha-1) in the plots and subplots, respectively. Forage sowing before the soybean harvest made it possible to anticipate first grazing by 14 days, with satisfactory establishment of forage species without affecting forage production. This method permitted a longer grazing period, preventing the need for soil disking, besides allowing the use of no-tillage system. The mixture of forage species enables higher forage yield for pasture in relation to single species pastures, with response to nitrogen fertilization up to 360 kg ha-1.
Resumo:
The objective of this work was to evaluate the utilization by corn plants of P from triple superphosphate fertilizer labeled with 32P (32P‑TSP), and of P from soil as affected by N rates and by the green manures (GM) sunn hemp (Crotalaria juncea) and millet (Pennisetum glaucum). The experiment was carried out using pots filled with 5 kg Oxisol (Rhodic Hapludox). A completely randomized design was used, in a 4x4x2 factorial arrangement, with four replicates. The treatments were: four P rates as TSP (0, 0.175, 0.350, and 0.700 g P per pot); four N rates as urea (0, 0.75, 1.50, and 2.25 g N per pot); and sunn hemp or millet as green manure. The additions of N and P by the GM were taken into account. After grain physiologic maturation, corn dry matter, P contents, accumulated P, and P recovery in the different treatments were measured. 32P‑TSP recovery by corn increased with N increasing rates, and decreased with increasing rates of 32P‑TSP. The mineral fertilizer provides most of the accumulated P by corn plants. The recovery of 32P‑TSP by corn was 13.12% in average. The green manure species influence the assimilation of 32P‑TSP by the plants.
Resumo:
The objective of this work was to evaluate the agroindustrial production of sugarcane (millable stalks and sucrose yield) after successive nitrogen fertilizations of plant cane and ratoons in a reduced tillage system. The experiment was carried out at Jaboticabal, SP, Brazil, on a Rhodic Eutrustox soil, during four consecutive crop cycles (March 2005 to July 2009). Plant cane treatments consisted of N-urea levels (control, 40, 80, and 120 kg ha-1 N + 120 kg ha-1 P2O5 and K2O in furrow application). In the first and second ratoons, the plant cane plots were subdivided in N-ammonium nitrate treatments (control, 50, 100, and 150 kg ha-1 N + 150 kg ha-1 K2O as top dressing over rows). In the third ratoon, N fertilization was leveled to 100 kg ha-1 in all plots, including controls, to detect residual effects of previous fertilizations on the last crop's cycle. Sugarcane ratoon was mechanically harvested. A weighing truck was used to evaluate stalk yield (TCH), and samples were collected in the field for analysis of sugar content (TSH). Increasing N doses and meteorological conditions promote significant responses in TCH and TSH in cane plant and ratoons, in the average and accumulated yield of the consecutive crop cycles.