167 resultados para Muscle-skeketal symptoms
Resumo:
Calcineurin, a Ca2+/calmodulin-dependent phosphatase, is associated with muscle regeneration via NFATc1/GATA2-dependent pathways. However, it is not clear whether calcineurin preferentially affects the regeneration of slow- or fast-twitch muscles. We investigated the effect of a calcineurin inhibitor, cyclosporin A (CsA), on the morphology and fiber diameter of regenerating slow- and fast-twitch muscles. Adult Wistar rats (259.5 ± 9 g) maintained under standard conditions were treated with CsA (20 mg/kg body weight, ip) for 5 days, submitted to cryolesion of soleus and tibialis anterior (TA) muscles on the 6th day, and then treated with CsA for an additional 21 days. The muscles were removed, weighed, frozen, and stored in liquid nitrogen. Cryolesion did not alter the body weight gain of the animals after 21 days of regeneration (P = 0.001) and CsA significantly reduced the body weight gain (15.5%; P = 0.01) during the same period. All treated TA and soleus muscles showed decreased weights (17 and 29%, respectively, P < 0.05). CsA treatment decreased the cross-sectional area of both soleus and TA muscles of cryoinjured animals (TA: 2108 ± 930 vs 792 ± 640 µm²; soleus: 2209 ± 322 vs 764 ± 439 m²; P < 0.001). Histological sections of both muscles stained with Toluidine blue revealed similar regenerative responses after cryolesion. In addition, CsA was able to minimize these responses, i.e., centralized nuclei and split fibers, more efficiently so in TA muscle. These results indicate that calcineurin preferentially plays a role in regeneration of slow-twitch muscle.
Resumo:
The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a ß2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10), treated with salbutamol (N = 30), denervated (N = 30), and treated with salbutamol after denervation (N = 30). Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21%) in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other ß2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.
Resumo:
Cyclosporin-A (CsA) is an immunosuppressive drug that acts as an inhibitor of calcineurin, a calcium phosphatase that has been suggested to play a role in skeletal muscle hypertrophy. The aim of the present study was to determine the effect of CsA administration (25 mg kg-1 day-1) on skeletal muscle mass and phenotype during disuse and recovery. Male Wistar rats received vehicle (N = 8) or CsA (N = 8) during hind limb immobilization (N = 8) and recovery (N = 8). Muscle weight (dry/wet) and cross-sectional area were evaluated to verify the effect of CsA treatment on muscle mass. Muscle phenotype was assessed by histochemistry of myosin ATPase. CsA administration during immobilization and recovery did not change muscle/body weight ratio in the soleus (SOL) or plantaris (PL). Regarding muscle phenotype, we observed a consistent slow-to-fast shift in all experimental groups (immobilized only, receiving CsA only, and immobilized receiving CsA) as compared to control in both SOL and PL (P < 0.05). During recovery, no difference was observed in SOL or PL fiber type composition between the experimental recovered group and recovered group receiving CsA compared to their respective controls. Considering the muscle/body weight ratio, CsA administration does not maximize muscle mass loss induced by immobilization. Our results also indicate that CsA fails to block skeletal muscle regrowth after disuse. The present data suggest that calcineurin inhibition by CsA modulates muscle phenotype rather than muscle mass.
Resumo:
The effects of adding L-carnitine to a whole-body and respiratory training program were determined in moderate-to-severe chronic obstructive pulmonary disease (COPD) patients. Sixteen COPD patients (66 ± 7 years) were randomly assigned to L-carnitine (CG) or placebo group (PG) that received either L-carnitine or saline solution (2 g/day, orally) for 6 weeks (forced expiratory volume on first second was 38 ± 16 and 36 ± 12%, respectively). Both groups participated in three weekly 30-min treadmill and threshold inspiratory muscle training sessions, with 3 sets of 10 loaded inspirations (40%) at maximal inspiratory pressure. Nutritional status, exercise tolerance on a treadmill and six-minute walking test, blood lactate, heart rate, blood pressure, and respiratory muscle strength were determined as baseline and on day 42. Maximal capacity in the incremental exercise test was significantly improved in both groups (P < 0.05). Blood lactate, blood pressure, oxygen saturation, and heart rate at identical exercise levels were lower in CG after training (P < 0.05). Inspiratory muscle strength and walking test tolerance were significantly improved in both groups, but the gains of CG were significantly higher than those of PG (40 ± 14 vs 14 ± 5 cmH2O, and 87 ± 30 vs 34 ± 29 m, respectively; P < 0.05). Blood lactate concentration was significantly lower in CG than in PG (1.6 ± 0.7 vs 2.3 ± 0.7 mM, P < 0.05). The present data suggest that carnitine can improve exercise tolerance and inspiratory muscle strength in COPD patients, as well as reduce lactate production.
Resumo:
The aim of the present investigation was to study the effect of acute swimming training with an anaerobic component on matrix metallopeptidase (MMP) activity and myosin heavy chain gene expression in the rat myocardium. Animals (male Wistar rats, weighing approximately 180 g) were trained for 6 h/day in 3 sessions of 2 h each for 1 to 5 consecutive days (N = 5 rats per group). Rats swam in basins 47 cm in diameter and 60 cm deep filled with water at 33 to 35ºC. After the training period a significant increase (P < 0.05) was observed in the heart weight normalized to body weight by about 22 and 35% in the groups that trained for 96 and 120 h, respectively. Blood lactate levels were significantly increased (P < 0.05) in all groups after all training sessions, confirming an anaerobic component. However, lactate levels decreased (P < 0.05) with days of training, suggesting that the animals became adapted to this protocol. Myosin heavy chain-ß gene expression, analyzed by real time PCR and normalized with GAPDH gene expression, showed a significant two-fold increase (P < 0.01) after 5 days of training. Zymography analysis of myocardium extracts indicated a single ~60-kDa activity band that was significantly increased (P < 0.05) after 72, 96, and 120 h, indicating an increased expression of MMP-2 and suggesting precocious remodeling. Furthermore, the presence of MMP-2 was confirmed by Western blot analysis, but not the presence of MMP-1 and MMP-3. Taken together, our results indicate that in these training conditions, the rat heart undergoes early biochemical and functional changes required for the adaptation to the new physiological condition by tissue remodeling.
Resumo:
Psychological depression is an independent risk factor for coronary artery disease. C-reactive protein has been implicated as a mediator of the effect of psychological depression. Several studies have found that individuals, especially men, who report higher levels of psychological depression also have higher levels of C-reactive protein. The current study was undertaken to replicate these results in a Brazilian population, in which there is a much wider range of variation in both background characteristics (such as socioeconomic status) and coronary artery disease risk factors. A sample of 271 individuals was interviewed using the Center for Epidemiological Studies Depression Scale. Fasting blood samples were obtained and evaluated for C-reactive protein (assessed by a turbidimetric immunoassay using a Dade Behring kit) analysis in a subsample (N = 258) of individuals. The mean ± SD C-reactive protein for the entire sample was 0.43 ± 0.44, with 0.42 ± 0.48 for men and 0.43 ± 0.42 mg/L for women. Data were analyzed using multiple regression analysis, controlling for age, sex, body mass index, socioeconomic status, tobacco use, and both total cholesterol and low-density lipoprotein cholesterol. Higher reported depressive symptoms were correlated with higher C-reactive protein for men (partial r = 0.298, P = 0.004) and with lower C-reactive protein for women (partial r = -0.154, P = 0.059). The differences in the associations for men and women could be a result of differential effects of sex hormones on stress reactivity and immune response. On the other hand, this difference in the associations may be related to gender differences in the disclosure of emotion and the effect that self-disclosure has on physical health and immune response.
Resumo:
A 42-year-old male complaining of thoracic spine pain was admitted to the hospital for evaluation. An X-ray and computer tomography of the thoracic spine showed spondylodiscitis of the L3 lumbar and L2-L3 intervertebral disk. The tuberculin skin test (PPD) was strongly positive. A radioscopy-guided fine needle aspirate of the affected area was cultured but did not reveal the cause of the disease. Two biopsy attempts failed to reveal the cause of the disease by culturing or by acid-fast-resistant staining (Ziehl Neelsen) of the specimens. A third biopsy also failed to detect the infectious agent by using microbiological procedures, but revealed the presence of a 245-bp amplicon characteristic of the Mycobacterium tuberculosis complex after PCR of the sample. The result demonstrates the efficacy of PCR for the identification of M. tuberculosis in situations in which conventional diagnosis by culturing techniques or direct microscopy is unable to detect the microorganism. Following this result the patient was treated with the antituberculous cocktail composed by rifampicin, pirazinamide and isoniazid during a six-month period. At the end of the treatment the dorsalgia symptoms had disappeared.
Resumo:
Premenstrual syndrome and premenstrual dysphoric disorder (PMDD) seem to form a severity continuum with no clear-cut boundary. However, since the American Psychiatric Association proposed the research criteria for PMDD in 1994, there has been no agreement about the symptomatic constellation that constitutes this syndrome. The objective of the present study was to establish the core latent structure of PMDD symptoms in a non-clinical sample. Data concerning PMDD symptoms were obtained from 632 regularly menstruating college students (mean age 24.4 years, SD 5.9, range 17 to 49). For the first random half (N = 316), we performed principal component analysis (PCA) and for the remaining half (N = 316), we tested three theory-derived competing models of PMDD by confirmatory factor analysis. PCA allowed us to extract two correlated factors, i.e., dysphoric-somatic and behavioral-impairment factors. The two-dimensional latent model derived from PCA showed the best overall fit among three models tested by confirmatory factor analysis (c²53 = 64.39, P = 0.13; goodness-of-fit indices = 0.96; adjusted goodness-of-fit indices = 0.95; root mean square residual = 0.05; root mean square error of approximation = 0.03; 90%CI = 0.00 to 0.05; Akaike's information criterion = -41.61). The items "out of control" and "physical symptoms" loaded conspicuously on the first factor and "interpersonal impairment" loaded higher on the second factor. The construct validity for PMDD was accounted for by two highly correlated dimensions. These results support the argument for focusing on the core psychopathological dimension of PMDD in future studies.
Resumo:
Several studies have reported that symptoms of anxiety and depression are significantly associated with diseases characterized by painful crises. However, there is little information about the psychological aspects of recurrent painful episodes of renal stone disease. Our objective was to evaluate the association of symptoms of anxiety, depression and recurrent painful renal colic in a case-control study involving 64 subjects (32 cases/32 controls) matched for age and sex. Cases were outpatients with a confirmed diagnosis of nephrolithiasis as per their case history, physical examination, image examination and other laboratory exams. Patients had a history of at least two episodes within a 3-year period, and were currently in an intercrisis interval. The control group consisted of subjects seen at the Ophthalmology Outpatient Clinic of this University Hospital with only eye refraction symptoms, and no other associated disease. Symptoms of anxiety were evaluated by the State-Trait Anxiety Inventory and symptoms of depression by the Beck Depression Inventory. Statistically significant differences were observed between patients with nephrolithiasis and controls for anxiety state (P = 0.001), anxiety trait (P = 0.005) and symptoms of depression (odds ratio = 3.74; 95%CI = 1.31-10.62). The Beck Depression Inventory showed 34.5% of respondents with moderate and 6% with severe levels of depression. There was a significant linear correlation between symptoms of anxiety (P = 0.002) and depression (P < 0.001) and the number of recurrent colic episodes (anxiety-state: P = 0.016 and anxiety-trait: P < 0.001). These data suggest an association between recurrent renal colic and symptoms of both anxiety and depression.
Resumo:
Our objective was to evaluate the effectiveness of a long-acting formulation of methylphenidate (MPH-SODAS) on attention-deficit/hyperactivity disorder (ADHD) symptoms in an outpatient sample of adolescents with ADHD and substance use disorders (SUD). Secondary goals were to evaluate the tolerability and impact on drug use of MPH-SODAS. This was a 6-week, single-blind, placebo-controlled crossover study assessing efficacy of escalated doses of MPH-SODAS on ADHD symptoms in 16 adolescents with ADHD/SUD. Participants were randomly allocated to either group A (weeks 1-3 on MPH-SODAS, weeks 4-6 on placebo) or group B (reverse order). The primary outcome measures were the Swanson, Nolan and Pelham Scale, version IV (SNAP-IV) and the Clinical Global Impression Scale (CGI). We also evaluated the adverse effects of MPH-SODAS using the Barkley Side Effect Rating Scale and subject reports of drug use during the study. The sample consisted of marijuana (N = 16; 100%) and cocaine users (N = 7; 43.8%). Subjects had a significantly greater reduction in SNAP-IV and CGI scores (P < 0.001 for all analyses) during MPH-SODAS treatment compared to placebo. No significant effects for period or sequence were found in analyses with the SNAP-IV and CGI scales. There was no significant effect on drug use. MPH-SODAS was well tolerated but was associated with more severe appetite reduction than placebo (P < 0.001). MPH-SODAS was more effective than placebo in reducing ADHD symptoms in a non-abstinent outpatient sample of adolescents with comorbid SUD. Randomized clinical trials, with larger samples and SUD intervention, are recommended.
Resumo:
The objective of the present study was to assess the effect of transcutaneous electrical diaphragmatic stimulation (TEDS) on different types of diaphragm muscle fibers. Male Wistar rats (8-12 weeks old) were divided into 2 experimental groups (N = 8 in each group): 1) control, 2) animals submitted to TEDS [frequency = 50 Hz; T ON/T OFF (contraction/relaxation time) = 2/2 s; pulse duration = 0.4 ms, intensity = 5 mA with a 1 mA increase every 3 min for 20 min] for 7 days. After completing this treatment period, the I, IIA, IIB, and IID diaphragm muscle fibers were identified using the mATPase technique. Statistical analysis consisted of the normality, homoscedasticity and t-tests (P < 0.05). There was a 19.6% (P < 0.05) reduction in the number of type I fibers and a 49.7% increase (P < 0.05) in type IID fibers in the TEDS group compared with the control group. An important result of the present study was that electrical stimulation with surface electrodes was efficient in altering the distribution of fibers in diaphragm muscle. This therapeutic resource could be used in the treatment of respiratory muscle alterations.
Resumo:
The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase). Data were analyzed statistically by the mixed effects linear model (P < 0.05). Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001). In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001). In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009). We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.
Resumo:
The aim of the present study was to evaluate the effect of joint immobilization on morphometric parameters and glycogen content of soleus muscle treated with clenbuterol. Male Wistar (3-4 months old) rats were divided into 4 groups (N = 6 for each group): control, clenbuterol, immobilized, and immobilized treated with clenbuterol. Immobilization was performed with acrylic resin orthoses and 10 µg/kg body weight clenbuterol was administered subcutaneously for 7 days. The following parameters were measured the next day on soleus muscle: weight, glycogen content, cross-sectional area, and connective tissue content. The clenbuterol group showed an increase in glycogen (81.6%, 0.38 ± 0.09 vs 0.69 ± 0.06 mg/100 g; P < 0.05) without alteration in weight, cross-sectional area or connective tissue compared with the control group. The immobilized group showed a reduction in muscle weight (34.2%, 123.5 ± 5.3 vs 81.3 ± 4.6 mg; P < 0.05), glycogen content (31.6%, 0.38 ± 0.09 vs 0.26 ± 0.05 mg/100 mg; P < 0.05) and cross-sectional area (44.1%, 2574.9 ± 560.2 vs 1438.1 ± 352.2 µm²; P < 0.05) and an increase in connective tissue (216.5%, 8.82 ± 3.55 vs 27.92 ± 5.36%; P < 0.05). However, the immobilized + clenbuterol group showed an increase in weight (15.9%; 81.3 ± 4.6 vs 94.2 ± 4.3 mg; P < 0.05), glycogen content (92.3%, 0.26 ± 0.05 vs 0.50 ± 0.17 mg/100 mg; P < 0.05), and cross-sectional area (19.9%, 1438.1 ± 352.2 vs 1724.8 ± 365.5 µm²; P < 0.05) and a reduction in connective tissue (52.2%, 27.92 ± 5.36 vs 13.34 ± 6.86%; P < 0.05). Statistical analysis was performed using Kolmogorov-Smirnov and homoscedasticity tests. For the muscle weight and muscle glycogen content, two-way ANOVA and the Tukey test were used. For the cross-sectional area and connective tissue content, Kruskal-Wallis and Tukey tests were used. This study emphasizes the importance of anabolic pharmacological protection during immobilization to minimize skeletal muscle alterations resulting from disuse.
Resumo:
The association of plasma interleukin-6 (IL-6) levels, muscle strength and functional capacity was investigated in a cross-sectional study of community-dwelling elderly women from Belo Horizonte, Brazil. Elderly people who present controlled chronic diseases with no negative impact on physical, psychosocial and mental functionality are considered to be community-dwelling. Psychological and social stress due to unsuccessfully aging can represent a risk for immune system disfunctions. IL-6 levels, isokinetic muscle strength of knee flexion/extension, and functional tests to determine time required to rise from a chair and gait velocity were measured in 57 participants (71.21 ± 7.38 years). Serum levels of IL-6 were measured in duplicate and were performed within one single assay (mouse monoclonal antibody against IL-6; High-Sensitivity, Quantikine®, R & D Systems, USA; intra-assay coefficient of variance = 6.9-7.4%; interassay coefficient of variance = 9.6-6.5%; sensitivity = 0.016-0.110 pg/mL; mean = 0.039 pg/mL). Muscle strength was assessed with the isokinetic dynamometer Biodex System 3 Pro®. After the Shapiro-Wilk normality test was applied, correlations were investigated using Spearman and Kruskal-Wallis tests. Post hoc analysis was performed using the Dunn test. A significant negative correlation was observed between plasma IL-6 levels (1.95 ± 1.77 pg/mL) and muscle strength for knee flexion (70.70 ± 21.14%; r = -0.265; P = 0.047) and extension (271.84 ± 67.85%; r = -0.315; P = 0.017). No significant correlation was observed between IL-6 levels and the functional tests (time to rise from a chair = 14.65 ± 2.82 s and gait velocity = 0.95 ± 0.14 m/s). These results suggest that IL-6 is associated with reduced muscle strength.
Resumo:
Mammalian cells contain several proteolytic systems to carry out the degradative processes and complex regulatory mechanisms to prevent excessive protein breakdown. Among these systems, the Ca2+-activated proteolytic system involves the cysteine proteases denoted calpains, and their inhibitor, calpastatin. Despite the rapid progress in molecular research on calpains and calpastatin, the physiological role and regulatory mechanisms of these proteins remain obscure. Interest in the adrenergic effect on Ca2+-dependent proteolysis has been stimulated by the finding that the administration of β2-agonists induces muscle hypertrophy and prevents the loss of muscle mass in a variety of pathologic conditions in which calpains are activated. This review summarizes evidence indicating that the sympathetic nervous system produces anabolic, protein-sparing effects on skeletal muscle protein metabolism. Studies are reviewed, which indicate that epinephrine secreted by the adrenal medulla and norepinephrine released from adrenergic terminals have inhibitory effects on Ca2+-dependent protein degradation, mainly in oxidative muscles, by increasing calpastatin levels. Evidence is also presented that this antiproteolytic effect, which occurs under both basal conditions and in stress situations, seems to be mediated by β2- and β3-adrenoceptors and cAMP-dependent pathways. The understanding of the precise mechanisms by which catecholamines promote muscle anabolic effects may have therapeutic value for the treatment of muscle-wasting conditions and may enhance muscle growth in farm species for economic and nutritional purposes.