153 resultados para Mechanical efficiency
Resumo:
During vehicle deceleration due to braking there is friction between the lining surface and the brake drum or disc. In this process the kinetic energy of vehicle is turned into thermal energy that raises temperature of the components. The heating of the brake system in the course of braking is a great problem, because besides damaging the system, it may also affect the wheel and tire, which can cause accidents. In search of the best configuration that considers the true conditions of use, without passing the safety limits, models and formulations are presented with respect to the brake system, considering different braking conditions and kinds of brakes. Some modeling was analyzed using well-known methods. The flat plate model considering energy conservation was applied to a bus, using for this a computer program. The vehicle is simulated to undergo an emergency braking, considering the change of temperature on the lining-drum. The results include deceleration, braking efficiency, wheel resistance, normal reaction on the tires and the coefficient of adhesion. Some of the results were compared with dynamometer tests made by FRAS-LE and others were compared with track tests made by Mercedes-Benz. The convergence between the results and the tests is sufficient to validate the mathematical model. The computer program makes it possible to simulate the brake system performance in the vehicle. It assists the designer during the development phase and reduces track tests.
Resumo:
Venturi scrubbers are high efficiency gas cleaners in which suspended particles are removed from gas streams by droplets formed by liquid atomisation, usually in the venturi throat. The size of the droplets formed is of fundamental importance to the performance of the equipment, both in terms of pressure drop and collection efficiency. In this study, drop sizes in a cylindrical laboratory scale venturi scrubber were measured using a laser diffraction technique. Gas velocity and liquid to gas ratios varied from 50 to 90 m/s and 0.5 to 2.0 l/m3, respectively. Water was inserted as perpendicular jets at the beginning of the throat. Measurements were performed at three positions: two located along the throat, and the last one at the end of the diffuser. The data presented here are a typical example of pneumatic atomisation and can be relevant to other industrial applications such as combustion and engine technology. Finally, results are compared to available correlations and the validity of these equations is discussed.
Resumo:
This paper studies the effect of time delay on the active non-linear control of dynamically loaded flexible structures. The behavior of non-linear systems under state feedback control, considering a fixed time delay for the control force, is investigated. A control method based on non-linear optimal control, using a tensorial formulation and state feedback control is used. The state equations and the control forces are expressed in polynomial form and a performance index, quadratic in both state vector and control forces, is used. General polynomial representations of the non-linear control law are obtained and implemented for control algorithms up to the fifth order. This methodology is applied to systems with quadratic and cubic non-linearities. Strongly non-linear systems are tested and the effectiveness of the control system including a delay for the application of control forces is discussed. Numerical results indicate that the adopted control algorithm can be efficient for non-linear systems, chiefly in the presence of strong non-linearities but increasing time delay reduces the efficiency of the control system. Numerical results emphasize the importance of considering time delay in the project of active structural control systems.
Resumo:
In this paper, the optimum design of 3R manipulators is formulated and solved by using an algebraic formulation of workspace boundary. A manipulator design can be approached as a problem of optimization, in which the objective functions are the size of the manipulator and workspace volume; and the constrains can be given as a prescribed workspace volume. The numerical solution of the optimization problem is investigated by using two different numerical techniques, namely, sequential quadratic programming and simulated annealing. Numerical examples illustrate a design procedure and show the efficiency of the proposed algorithms.
Resumo:
In this work a particular system is investigated consisting of a pendulum whose point of support is vibrated along a horizontal guide by a two bar linkage driven from a DC motor, considered as a limited power source. This system is nonideal since the oscillatory motion of the pendulum influences the speed of the motor and vice-versa, reflecting in a more complicated dynamical process. This work comprises the investigation of the phenomena that appear when the frequency of the pendulum draws near a secondary resonance region, due to the existing nonlinear interactions in the system. Also in this domain due to the power limitation of the motor, the frequency of the pendulum can be captured at resonance modifying completely the final response of the system. This behavior is known as Sommerfeld effect and it will be studied here for a nonlinear system.
Resumo:
Plot-scale overland flow experiments were conducted to evaluate the efficiency of streamside management zones (SMZs) in retaining herbicides in runoff generated from silvicultural activities. Herbicide retention was evaluated for five different slopes (2, 5, 10, 15, and 20%), two cover conditions (undisturbed O horizon and raked surface), and two periods under contrasting soil moisture conditions (summer dry and winter wet season) and correlated to O horizon and site conditions. Picloram (highly soluble in water) and atrazine (moderately sorbed into soil particles) at concentrations in the range of 55 and 35 µg L-1 and kaolin clay (approximately 5 g L-1) were mixed with 13.000 liters of water and dispersed over the top of 5 x 10 m forested plots. Surface flow was collected 2, 4, 6, and 10 m below the disperser to evaluate the changes in concentration as it moved through the O horizon and surface soil horizon-mixing zone. Results showed that, on average, a 10 m long forested SMZ removed around 25% of the initial concentration of atrazine and was generally ineffective in reducing the more soluble picloram. Retention of picloram was only 6% of the applied quantity. Percentages of mass reduction by infiltration were 36% for atrazine and 20% for picloram. Stronger relationships existed between O horizon depth and atrazine retention than in any other measured variable, suggesting that better solid-solution contact associated with flow through deeper O horizons is more important than either velocity or soil moisture as a determinant of sorption.
Resumo:
The objective of this work was to evaluate characteristics associated with the photosynthetic activity of cassava plants in competition with weeds or not. The trial was performed on open environment conditions, with experimental units consisting of fiber glass vases with 150 dm³ filled with Red Yellow Latosol, previously fertilized. Treatments consisted in the cultivation of cassava plants isolated and associated to three weed species (Bidens pilosa, Commelina benghalensis and Brachiaria plantaginea). After cassava shooting, 15 days after planting, a removal of the weeds excess was performed, sown at the time of cassava planting, leaving six plants m-2 of B. pilosa and four plants m-2 of C. benghalensis and B. plantaginea. At 60 days after emergence (DAE), stomatal conductance (Gs), vapor pressure in the substomatal cavity (Ean), temperature gradient between leaf and air (ΔT), transpiration rate (E) and water use efficiency (WUE) were evaluated. B. pilosa showed greater capacity to affect growth of cassava plants. B. plantaginea is very efficient in using water, especially by presenting C4 metabolism, and remains competitive with cassava even under temporarily low water status. C. benghalensis, in turn, is not a good competitor for light and apparently is not the primary cause of water depletion in the soil. The effects of weeds, in this case, were more associated with the competition. However, they were found between moderate to low. This implies that the competition established at experimental level was low.
Resumo:
At different growth stages, weeds present different sensitivities to herbicides. Thus, the registered herbicide rate may be reduced under specific conditions, while maintaining satisfactory weed control. This study evaluated the efficiency of reduced rates of the formulated herbicide mixture Velpar K WG® (hexazinone + diuron) + Volcane® (MSMA) for Brachiaria brizantha control at different growth stages. Optimum weed control efficiency was obtained when applying 50% of the recommended rate in younger plants (plants with one to four leaves). In late applications, it is necessary to increase the herbicide rates and, under these conditions, 90% of the recommended rate for (diuron + hexazinone) + MSMA was estimated to be the most economical one.
Resumo:
The aim of this study was to assess the capacity of sulfentrazone applied in pre-emergence in controlling Ipomoea hederifolia and Ipomoea quamoclit as a function of the time interval between herbicide application and the occurrence of rain, and the presence of sugarcane straw on the soil surface. Two greenhouse experiments and one field experiment were conducted. For the greenhouse experiments, the study included three doses of sulfentrazone applied by spraying 0, 0.6, and 0.9 kg ha-1, two amounts of straw on the soil (0 and 10 t ha-1), and five time intervals between the application of herbicide and rain simulation (0, 20, 40, 60, and 90 days). In the field experiment, five herbicide treatments (sulfentrazone at 0.6 and 0.9 kg ha-1, sulfentrazone + hexazinone at 0.6 + 0.25 kg ha-1, amicarbazone at 1.4 kg ha-1, and imazapic at 0.147 kg ha-1) and two controls with no herbicide were studied. Management conditions with or without sugarcane straw on the soil were also assessed. From the greenhouse experiments, sulfentrazone application at 0.6 kg ha-1 was found to provide for the efficient control of I. hederifolia and I. quamoclit in a dry environment, with up to 90 days between herbicide application and rain simulation. After herbicide application, 20 mm of simulated rain was enough to leach sulfentrazone from the straw to the soil, as the biological effects observed in I. hederifolia and I. quamoclit remained unaffected. Under field conditions, either with or without sugarcane straw left on the soil, sulfentrazone alone (0.6 or 0.9 kg ha-1) or sulfentrazone combined with hexazinone (0.6 + 0.25 kg ha-1) was effective in the control of I. hederifolia and I. quamoclit, exhibiting similar or better control than amicarbazone (1.4 kg ha-1) and imazapic (0.147 kg ha-1).
Resumo:
Light, temperature and dormancy are factors that influence the germination of seeds and are strictly linked to the emergence of weeds. The objective of this work was to assess the germination of Sorghum arundinaceum and Sorghum halepense subjected to different conditions of temperature and luminosity, as well as assessing seed dormancy breaking mechanisms. For this, two experiments were conducted, both arranged in a completely randomized design. Experiment 1 was installed in a 2 x 5 double factorial design. The first factor was the absence or presence of light for 12 hours, and the other was composed of five constant temperatures: 15, 20, 30, 40 and 45 oC. In experiment 2, the efficiency of nine treatments used for breaking dormancy of seeds was assessed. The variables analyzed for both experiments were germination percentage and germination speed index (GSI). For the statistical analysis were performed an analysis of variance (ANOVA) and all the necessary consequences, as well as regression, when relevant. In experiment 1 for both species greater germination occurred in the presence of light. For S. arundinaceum the temperatures at which there was the highest percentage of germination were 33.13 and 31.24 oC for presence and absence of light respectively. As for S. halepense these temperatures were 31.98 and 29.75 oC for presence and absence of light respectively. As for the treatments for breaking dormancy, the mechanical scarification of seeds with sandpaper presented the highest germination and GSI. It is concluded that the Sorghum species studied are neutral photoblastic seeds and present mechanical type dormancy.
Resumo:
ABSTRACTThe raw sugarcane harvesting system has changed the dynamics of weed tillage for this crop, changing the predominant weed species and providing a barrier between the herbicide and the soil. Thus, this study has aimed to assess the influence of precipitation and sugarcane straw in the aminocyclopyrachlor and indaziflam herbicides control efficiency for the species Ipomoea trilobaand Euphorbia heterophylla. There were two trials, one for aminocyclopyrachlor and one for the indaziflam, both in the greenhouse at the campus of Faculdade Integrado in the Brazilian city of Campo Mourão, PR. Each experiment consisted of eight treatments with four replications. The treatments consisted of the combination of the presence of straw (10 t ha-1), capillary irrigation and rainfall simulation (20 mm). Assessments of control percentage of I.triloba and E.heterophylla were carried out, as well as the number of plants per pot. The aminocyclopyrachlor and indaziflam herbicides applied directly to the soil were efficient in controlling these species. The 20 mm rainfall simulation or daily irrigation on the straw are indispensable to promote the removal of aminocyclopyrachlor and indaziflam from the straw and provide satisfactory control of I.triloba and E.heterophylla.
Resumo:
ABSTRACTInadequate herbicide application can result in failures in weed control and/or poisoning of the crops, resulting in yield losses. In this research were assessed the effects of the sprayer nozzle boom height in the distribution of the spray solution for weed control, influencing intoxication of beans and crop yield. Experiments were conducted in laboratory and field conditions. In laboratory, the performance of flat spray tip TT 11002 was assessed at heights 0.20, 0.30, 0.40 and 0.50 meters with respect to the target surface. In the field the same heights were assessed in applications of herbicides fomesafen, fluazifop-P-butyl and fomesafen + fluazifop-P-butyl. There was an inverse relationship between the height of the spray boom and the coefficients of variation of the patterns. The mixture better efficiency in a tank of fluazifop-P-butyl + fomesafen was obtained with the height of 0.50 m from the target. This treatment resulted in better weed control, lower poisoning of the bean plants and better crop yield rates.
Resumo:
ABSTRACT Understanding the critical period of weed competition is indispensable in the development of an effective weed management program in field crops. Current experiment was planned to evaluate the critical growth period ofSetaria and level of yield losses associated with delay in weeding in rain-fed drip irrigated wheat production system of Saudi Arabia. Field experiment was conducted to evaluate the effect of weeding interval (07-21, 14-28, 21-35, 28-42 and 35-49 days after sowing) and drought stress (75% and 50% of field capacity) on Setaria growth, wheat yield and water use efficiency. Season long weedy check and wellwatered (100% FC) plots were also maintained for comparison. Weeding interval and drought stress significantly (p ≤ 0.05) affected the growth and yield of Setaria and wheat. Drought stress from 75% to 50% FC resulted in reductions of 29-40% in Setaria height, 14-27% in Setaria density and 11-26% in Setaria dry biomass. All weeding intervals except 35-49 DAS significantly suppressedSetaria growth as compared with control. Delay in weeding increased weed-crop competition interval and reduced wheat yield and yield contributors. Therefore, the lowest yield of 1836 kg ha-1 was attained for weeding interval of 35-49 DAS at 50% FC. Water use efficiency and harvest index increased with decreasing FC levels but reduced with delay in weeding. Correlation analysis predicted negative association ofSetariadensity with wheat yield and yield contributors and the highest negative association was for harvest index (-0.913) and water use efficiency (-0.614). Early management of Setaria is imperative for successful wheat production otherwise yield losses are beyond economical limits.
Resumo:
ABSTRACT Weeds have the potential to dramatically interfere in cassava cultivation, reducing its productive potential; however, there are few studies on the selective herbicides in this crop. Therefore, the objective was to evaluate in this work the selectivity and efficiency of sulfentrazone in cassava crops grown in sandy and clayey soils. Two experiments were carried out: The first one was carried out in sandy soil conditions in the conventional system; and the second one was carried out in clayey soil conditions in the no-tillage system. The experimental design was a randomized block with four replications. The treatments consisted in doses of 250, 500, 750 and 1,000 g ha-1 of sulfentrazone, and weeded and non-weeded controls. Sulfentrazone application in cassava crops has linearly reduced the production of roots in a proportion of 0.0153 and 0.0107 t ha-1 at each increment in grams of the active ingredient, respectively. It was concluded that sulfentrazone was not selective for cassava crops grown both in sandy and in clayey soil; however, it was highly effective in weed control in both soils.
Resumo:
The seed coat is one of the main determinants of seed germination, vigor and longevity potentials. It is also intimately associated with temporal and spatial dispersion of seed germination in a large number of plant species. The understanding of its properties and characteristics may explain, anticipate or even allow the modification of seed performance under certain environmental conditions. There is a growing volume of evidence associating seed coat characteristics to specific seed problems. For example, susceptibility to mechanical damage is related to lignin content of the seed coat, while seed longevity and tolerance to field weathering depends on seed coat integrity. Seed performance in many legumes has been associated with certain seed coat structures, such as the hilum, strophiole and micropyle. In soybean, permeability is also related with porosity, color, and cerosity, that affect seed vigor, storage potential, resistance to shrinking and fungi infection, and to susceptibility to imbibition damage. The understanding of these associations is necessary before genetic alterations through breeding for desirable characteristics and is fundamental for the development and improvement of seed pre-sowing treatments, production, handling and quality evaluation procedures, which may ultimately result in reduction of seed quality losses and increase the efficiency of agricultural production systems.