136 resultados para Leukocyte infiltration
Resumo:
Fractal mathematics has been used to characterize water and solute transport in porous media and also to characterize and simulate porous media properties. The objective of this study was to evaluate the correlation between the soil infiltration parameters sorptivity (S) and time exponent (n) and the parameters dimension (D) and the Hurst exponent (H). For this purpose, ten horizontal columns with pure (either clay or loam) and heterogeneous porous media (clay and loam distributed in layers in the column) were simulated following the distribution of a deterministic Cantor Bar with fractal dimension H" 0.63. Horizontal water infiltration experiments were then simulated using Hydrus 2D software. The sorptivity (S) and time exponent (n) parameters of the Philip equation were estimated for each simulation, using the nonlinear regression procedure of the statistical software package SAS®. Sorptivity increased in the columns with the loam content, which was attributed to the relation of S with the capillary radius. The time exponent estimated by nonlinear regression was found to be less than the traditional value of 0.5. The fractal dimension estimated from the Hurst exponent was 17.5 % lower than the fractal dimension of the Cantor Bar used to generate the columns.
Resumo:
The introduction and intensification of no-tillage systems in Brazilian agriculture in recent decades have created a new scenario, increasing concerns about soil physical properties. The objective of this study was to assess the effects of different tillage systems on some physical properties of an Ultisol previously under native grassland. Five tillage methods were tested: no-tillage (NT), chiseling (Ch), no-tillage with chiseling every two years (NTCh2), chiseling using an equipment with a clod-breaking roller (ChR) and chiseling followed by disking (ChD). The bulk density, macroporosity, microporosity and total porosity, mechanical resistance to penetration, water infiltration into the soil and crop yields were evaluated. The values of soil bulk density, mechanical resistance to penetration and microporosity increased as macroporosity decreased. Soil bulk density was lower in tillage systems with higher levels of tillage/soil mobilization; highest values were observed in NT and the lowest in the ChD system. The water infiltration rate was highest in the ChR system, followed by the systems ChD, NT and NTCh2, while crop yields were higher in systems with less soil mobilization.
Resumo:
A method for determining soil hydraulic properties of a weathered tropical soil (Oxisol) using a medium-sized column with undisturbed soil is presented. The method was used to determine fitting parameters of the water retention curve and hydraulic conductivity functions of a soil column in support of a pesticide leaching study. The soil column was extracted from a continuously-used research plot in Central Oahu (Hawaii, USA) and its internal structure was examined by computed tomography. The experiment was based on tension infiltration into the soil column with free outflow at the lower end. Water flow through the soil core was mathematically modeled using a computer code that numerically solves the one-dimensional Richards equation. Measured soil hydraulic parameters were used for direct simulation, and the retention and soil hydraulic parameters were estimated by inverse modeling. The inverse modeling produced very good agreement between model outputs and measured flux and pressure head data for the relatively homogeneous column. The moisture content at a given pressure from the retention curve measured directly in small soil samples was lower than that obtained through parameter optimization based on experiments using a medium-sized undisturbed soil column.
Resumo:
Leptosols and Regosols are soils with a series of restrictions for use, mainly related to the effective depth, which have been poorly studied in Brazil. These soils, when derived from sedimentary rocks should be treated with particular care to avoid environmental damage such as aquifer contamination. The purpose of this study was to verify the behavior of hydraulic conductivity and water retention capacity in profiles of Leptosols and Regosols derived from sandstone of the Caturrita formation in Rio Grande do Sul state. The morphology, particle size distribution, porosity, soil density (Ds), saturated hydraulic conductivity (Ks), basic water infiltration in the field (BI) and water retention were determined in soil and saprolite samples of six soil profiles. High Ds, low macroporosity and high microporosity were observed in the profiles, resulting in a low Ks and BI, even under conditions of sandy texture and a highly fractured saprolite layer. The variation coefficients of data of Ks and BI were high among the studied profiles and between replications of a same profile. Water retention of the studied soils was higher in Cr layers than in the A horizons and the volume of plant-available water greater and variable among A horizons and Cr layers.
Resumo:
One of the main negative anthropic effects on soil is the formation of crusts, resulting in soil degradation. This process of physical origin reduces soil water infiltration, causing increased runoff and consequently soil losses, water erosion and/or soil degradation. The study and monitoring of soil crusts is important for soil management and conservation, mainly in tropical regions where research is insufficient to explain how soil crusts are formed and how they evolve. The purpose of this study was to monitor these processes on soils with different particle size distributions. Soil crusts on a sandy/sandy loam Argissolo Vermelho-Amarelo (Typic Hapludult), sandy loam Latossolo Vermelho-Amarelo (Typic Hapludox) and a clayey Nitossolo Vermelho eutroférrico (Rhodic Kandiudalf) were monitored. The soil was sampled and data collected after 0, 3, 5 and 10 rain storms with intensities above 25 mm h-1, from December 2008 to May 2009. Soil chemical and particle size distribution analysis were performed. The changes caused by rainfall were monitored by determining the soil roughness, hydraulic conductivity and soil water retention curves and by micromorphological analysis. Reduced soil roughness and crust formation were observed for all soils during the monitored rainfall events. However, contrary to what was expected according to the literature, crust formation was not always accompanied by reductions in total porosity, hydraulic conductivity and soil water retention.
Resumo:
Gully erosion occurs by the combined action of splash, sheetwash and rill-wash (interrill and rill erosion). These erosion processes have a great capacity for both sediment production and sediment transport. The objectives of this experiment were to evaluate hydrological and sediment transport in a degraded area, severely dissected by gullies; to assess the hydraulic flow characteristics and their aggregate transport capacity; and to measure the initial splash erosion rate. In the study area in Guarapuava, State of Paraná, Brazil (lat 25º 24' S; long 51º24' W; 1034 m asl), the soil was classified as Cambissolo Húmico alumínico, with the following particle-size composition: sand 0.116 kg kg-1; silt 0.180 kg kg-1; and clay 0.704 kg kg-1. The approach of this research was based on microcatchments formed in the ground, to study the hydrological response and sediment transport. A total of eight rill systems were simulated with dry and wet soil. An average rainfall of 33.7 ± 4.0 mm was produced for 35 to 54 min by a rainfall simulator. The equipment was installed, and a trough was placed at the end of the rill to collect sediments and water. During the simulation, the following variables were measured: time to runoff, time to ponding, time of recession, flow velocity, depth, ratio of the initial splash and grain size. The rainsplash of dry topsoil was more than twice as high as under moist conditions (5 g m-2 min-1 and 2 g m-2 min-1, respectively). The characteristics of the flow hydraulics indicate transition from laminar to turbulent flow [Re (Reynolds number) 1000-2000]. In addition, it was observed that a flow velocity of 0.12 m s-1 was the threshold for turbulent flow (Re > 2000), especially at the end of the rainfall simulation. The rill flow tended to be subcritical [Fr (Froude Number) < 1.0]. The variation in hydrological attributes (infiltration and runoff) was lower, while the sediment yield was variable. The erosion in the rill systems was characterized as limited transport, although the degraded area generated an average of 394 g m-2 of sediment in each simulation.
Resumo:
The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.
Resumo:
Soil management influences the chemical and physical properties of soil. Chemical conditions have been thoroughly studied, while the role of soil physical conditions regarding crop yield has been neglected. This study aimed to analyze the wheat yield and its relationship with physical properties of an Oxisol under no-tillage (NT). The study was carried out between 2010 and 2011, in Reserva do Iguaçu, State of Paraná, Brazil, on the Campo Bonito farm, after 25 years of NT management. Based on harvest maps of barley (2006), wheat (2007) and maize (2009) of a plot (150 ha), zones with higher and lower yield potential (Z1 and Z2, respectively) were identified. Sampling grids with 16 units (50 x 50 m) and three sampling points per unit were established. The wheat grain yield (GY) and water infiltration capacity (WIC) were evaluated in 2010. Soil samples with disturbed and undisturbed structure were collected from the 0.00-0.10 and 0.10-0.20 m layers. The former were used to determine soil organic carbon (Corg) levels and the latter to determine soil bulk density (BD), total porosity (TP), macroporosity (Mac), and microporosity (Mic). Soil penetration resistance (PR) and water content (SWC) were also evaluated. The wheat GY of the whole plot was close to the regional average and the yield between the zones differed significantly, i.e. 22 % higher in Z1 than in Z2. No significant variation in Mic was observed between zones, but Z1 had higher Corg levels, SWC, TP and Mac and lower BD than Z2 in both soil layers, as well as a lower PR than Z2 in the 0.00-0.10 m layer. Therefore, soil physical conditions were more restrictive in Z2, in agreement with wheat yield and zone yield potential defined a priori, based on the harvest maps. Soil WIC in Z1 was significantly higher (30 %) than in Z2, in agreement with the results of TP and Mac which were also higher in Z1 in both soil layers. The correlation analysis of data of the two layers showed a positive relationship between wheat GY and the soil properties TP, SWC and WIC.
Resumo:
The construction of a soil after surface coal mining involves heavy machinery traffic during the topographic regeneration of the area, resulting in compaction of the relocated soil layers. This leads to problems with water infiltration and redistribution along the new profile, causing water erosion and consequently hampering the revegetation of the reconstructed soil. The planting of species useful in the process of soil decompaction is a promising strategy for the recovery of the soil structural quality. This study investigated the influence of different perennial grasses on the recovery of reconstructed soil aggregation in a coal mining area of the Companhia Riograndense de Mineração, located in Candiota-RS, which were planted in September/October 2007. The treatments consisted of planting: T1- Cynodon dactylon cv vaquero; T2 - Urochloa brizantha; T3 - Panicum maximun; T4 - Urochloa humidicola; T5 - Hemarthria altissima; T6 - Cynodon dactylon cv tifton 85. Bare reconstructed soil, adjacent to the experimental area, was used as control treatment (T7) and natural soil adjacent to the mining area covered with native vegetation was used as reference area (T8). Disturbed and undisturbed soil samples were collected in October/2009 (layers 0.00-0.05 and 0.10-0.15 m) to determine the percentage of macro- and microaggregates, mean weight diameter (MWD) of aggregates, organic matter content, bulk density, and macro- and microporosity. The lower values of macroaggregates and MWD in the surface than in the subsurface layer of the reconstructed soil resulted from the high degree of compaction caused by the traffic of heavy machinery on the clay material. After 24 months, all experimental grass treatments showed improvements in soil aggregation compared to the bare reconstructed soil (control), mainly in the 0.00-0.05 m layer, particularly in the two Urochloa treatments (T2 and T4) and Hemarthria altissima (T5). However, the great differences between the treatments with grasses and natural soil (reference) indicate that the recovery of the pre-mining soil structure could take decades.
Resumo:
The cropping system influences the interception of water by plants, water storage in depressions on the soil surface, water infiltration into the soil and runoff. The aim of this study was to quantify some hydrological processes under no tillage cropping systems at the edge of a slope, in 2009 and 2010, in a Humic Dystrudept soil, with the following treatments: corn, soybeans, and common beans alone; and intercropped corn and common bean. Treatments consisted of four simulated rainfall tests at different times, with a planned intensity of 64 mm h-1 and 90 min duration. The first test was applied 18 days after sowing, and the others at 39, 75 and 120 days after the first test. Different times of the simulated rainfall and stages of the crop cycle affected soil water content prior to the rain, and the time runoff began and its peak flow and, thus, the surface hydrological processes. The depth of the runoff and the depth of the water intercepted by the crop + soil infiltration + soil surface storage were affected by the crop systems and the rainfall applied at different times. The corn crop was the most effective treatment for controlling runoff, with a water loss ratio of 0.38, equivalent to 75 % of the water loss ratio exhibited by common bean (0.51), the least effective treatment in relation to the others. Total water loss by runoff decreased linearly with an increase in the time that runoff began, regardless of the treatment; however, soil water content on the gravimetric basis increased linearly from the beginning to the end of the rainfall.
Resumo:
The area under the no-tillage system (NT) has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean) on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam) from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM) model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC) for these soils, but not the hydraulic conductivity (K) vs tension (h) curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.
Resumo:
Taking into account the nature of the hydrological processes involved in in situ measurement of Field Capacity (FC), this study proposes a variation of the definition of FC aiming not only at minimizing the inadequacies of its determination, but also at maintaining its original, practical meaning. Analysis of FC data for 22 Brazilian soils and additional FC data from the literature, all measured according to the proposed definition, which is based on a 48-h drainage time after infiltration by shallow ponding, indicates a weak dependency on the amount of infiltrated water, antecedent moisture level, soil morphology, and the level of the groundwater table, but a strong dependency on basic soil properties. The dependence on basic soil properties allowed determination of FC of the 22 soil profiles by pedotransfer functions (PTFs) using the input variables usually adopted in prediction of soil water retention. Among the input variables, soil moisture content θ (6 kPa) had the greatest impact. Indeed, a linear PTF based only on it resulted in an FC with a root mean squared residue less than 0.04 m³ m-3 for most soils individually. Such a PTF proved to be a better FC predictor than the traditional method of using moisture content at an arbitrary suction. Our FC data were compatible with an equivalent and broader USA database found in the literature, mainly for medium-texture soil samples. One reason for differences between FCs of the two data sets of fine-textured soils is due to their different drainage times. Thus, a standardized procedure for in situ determination of FC is recommended.
Resumo:
Field capacity (FC) is a parameter widely used in applied soil science. However, its in situ method of determination may be difficult to apply, generally because of the need of large supplies of water at the test sites. Ottoni Filho et al. (2014) proposed a standardized procedure for field determination of FC and showed that such in situ FC can be estimated by a linear pedotransfer function (PTF) based on volumetric soil water content at the matric potential of -6 kPa [θ(6)] for the same soils used in the present study. The objective of this study was to use soil moisture data below a double ring infiltrometer measured 48 h after the end of the infiltration test in order to develop PTFs for standard in situ FC. We found that such ring FC data were an average of 0.03 m³ m- 3 greater than standard FC values. The linear PTF that was developed for the ring FC data based only on θ(6) was nearly as accurate as the equivalent PTF reported by Ottoni Filho et al. (2014), which was developed for the standard FC data. The root mean squared residues of FC determined from both PTFs were about 0.02 m³ m- 3. The proposed method has the advantage of estimating the soil in situ FC using the water applied in the infiltration test.
Resumo:
Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina') under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT), between the wheel tracks (BWT), and in the area under the line projection of the canopy (CLP), with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf) in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT), which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.
Resumo:
ABSTRACT The concept of soil physical quality (SPQ) is currently under discussion, and an agreement about which soil physical properties should be included in the SPQ characterization has not been reached. The objectives of this study were to evaluate the ability of SPQ indicators based on static and dynamic soil properties to assess the effects of two loosening treatments (chisel plowing to 0.20 m [ChT] and subsoiling to 0.35 m [DL]) on a soil under NT and to compare the performance of static- and dynamic-based SPQ indicators to define soil proper soil conditions for soybean yield. Soil sampling and field determinations were carried out after crop harvest. Soil water retention curve was determined using a tension table, and field infiltration was measured using a tension disc infiltrometer. Most dynamic SPQ indicators (field saturated hydraulic conductivity, K0, effective macroporosity, εma, total connectivity and macroporosity indexes [CwTP and Cwmac]) were affected by the studied treatments, and were greater for DL compared to NT and ChT (K0 values were 2.17, 2.55, and 4.37 cm h-1 for NT, ChT, and DL, respectively). However, static SPQ indicators (calculated from the water retention curve) were not capable of distinguishing effects among treatments. Crop yield was significantly lower for the DL treatment (NT: 2,400 kg ha-1; ChT: 2,358 kg ha-1; and DL: 2,105 kg ha1), in agreement with significantly higher values of the dynamic SPQ indicators, K0, εma, CwTP, and Cwmac, in this treatment. The results support the idea that SPQ indicators based on static properties are not capable of distinguishing tillage effects and predicting crop yield, whereas dynamic SPQ indicators are useful for distinguishing tillage effects and can explain differences in crop yield when used together with information on weather conditions. However, future studies, monitoring years with different weather conditions, would be useful for increasing knowledge on this topic.