166 resultados para Inflammatory reactions
Resumo:
Mother-pup interaction, as well as other behavioral reactions were studied during the lactation period in 24 litters of Wistar rats and their dams fed either a 16% (control - C; 12 litters) or a 6% (malnourished - M; 12 litters) protein diet. The diets were isocaloric. Throughout lactation there was a 36.4% weight loss of M dams and a 63% body weight deficit in the M pups when compared to control pups. During this period, half of the litters were exposed daily to additional tactile stimulation (CS or MS), while the other half were submitted to normal rearing conditions (CN or MN). The tactile stimulation of pups (handling) consisted of holding the animal in one hand and gently touching the dorsal part of the animal's body with the fingers for 3 min. A special camera and a time-lapse video were used to record litter behavior in their home cages. Starting at 6 p.m. and ending at 6 a.m., on days 3, 6, 12, 15, 18 and 21 of lactation, photos were taken at 4-s intervals. An increase in the frequency (154.88 ± 16.19) and duration (455.86 ± 18.05 min) of suckling was observed throughout the lactation period in all groups compared to birth day (frequency 24.88 ± 2.37 and duration 376.76 ± 21.01 min), but the frequency was higher in the C (84.96 ± 8.52) than in the M group (43.13 ± 4.37); however, the M group (470.2 ± 11.87 min) spent more time suckling as compared with the C group (393.67 ± 13.09 min). The M dams showed a decreased frequency of resting position throughout the lactation period (6.5 ± 2.48) compared to birth day (25.42 ± 7.74). Pups from the C group were more frequently observed separated (73.02 ± 4.38) and interacting (258.99 ± 20.61) more with their mothers than the M pups (separated 66.94 ± 5.5 and interacting 165.72 ± 12.05). Tactile stimulation did not interact with diet condition, showing that the kind of stimulation used in the present study did not lead to recovery from the changes induced by protein malnutrition. The changes in mother-pup interaction produced by protein malnutrition of both may represent retardation in neuromotor development and a higher dependence of the pups on their mothers. These changes may represent an important means of energy saving and heat maintenance in malnourished pups.
Resumo:
We have shown that tissue-type plasminogen activator (tPA) and plasma kallikrein share a common pathway for liver clearance and that the hepatic clearance rate of plasma kallikrein increases during the acute-phase (AP) response. We now report the clearance of tPA from the circulation and by the isolated, exsanguinated and in situ perfused rat liver during the AP response (48-h ex-turpentine treatment). For the sake of comparison, the hepatic clearance of a tissue kallikrein and thrombin was also studied. We verified that, in vivo, the clearance of 125I-tPA from the circulation of turpentine-treated rats (2.2 ± 0.2 ml/min, N = 7) decreases significantly (P = 0.016) when compared to normal rats (3.2 ± 0.3 ml/min, N = 6). The AP response does not modify the tissue distribution of administered 125I-tPA and the liver accounts for most of the 125I-tPA (>80%) cleared from the circulation. The clearance rate of tPA by the isolated and perfused liver of turpentine-treated rats (15.5 ± 1.3 µg/min, N = 4) was slower (P = 0.003) than the clearance rate by the liver of normal rats (22.5 ± 0.7 µg/min, N = 10). After the inflammatory stimulus and additional Kupffer cell ablation (GdCl3 treatment), tPA was cleared by the perfused liver at 16.2 ± 2.4 µg/min (N = 5), suggesting that Kupffer cells have a minor influence on the hepatic tPA clearance during the AP response. In contrast, hepatic clearance rates of thrombin and pancreatic kallikrein were not altered during the AP response. These results contribute to explaining why the thrombolytic efficacy of tPA does not correlate with the dose administered.
Resumo:
Two natural products Polypodium leucotomos extract (PL) and kojic acid (KA) were tested for their ability to scavenge reactive oxygen species (·OH, ·O2-, H2O2, ¹O2) in phosphate buffer. Hydroxyl radicals were generated by the Fenton reaction, and the rate constants of scavenging were 1.6 x 10(9) M-1 s-1 for KA and 1.0 x 10(9) M-1 s-1 for PL, similar to that of ethanol (1.4 x 10(9) M-1 s-1). With superoxide anions generated by the xanthine/hypoxanthine system, KA and PL (0.2-1.0 mg/ml) inhibited ·O2-dependent reduction of nitroblue tetrazolium by up to 30 and 31%, respectively. In the detection of ¹O2 by rose bengal irradiation, PL at 1.0 mg/ml quenched singlet oxygen by 43% relative to azide and KA by 36%. The present study demonstrates that PL showed an antioxidant effect, scavenging three of four reactive oxygen species tested here. Unlike KA, PL did not significantly scavenge hydrogen peroxide.
Resumo:
Mechanical ventilation with high tidal volumes (V T) has been shown to induce lung injury. We examined the hypothesis that this procedure induces lung injury with inflammatory features. Anesthetized male Wistar rats were randomized into three groups: group 1 (N = 12): V T = 7 ml/kg, respiratory rate (RR) = 50 breaths/min; group 2 (N = 10): V T = 21 ml/kg, RR = 16 breaths/min; group 3 (N = 11): V T = 42 ml/kg, RR = 8 breaths/min. The animals were ventilated with fraction of inspired oxygen of 1 and positive end-expiratory pressure of 2 cmH2O. After 4 h of ventilation, group 3, compared to groups 1 and 2, had lower PaO2 [280 (range 73-458) vs 517 (range 307-596), and 547 mmHg (range 330-662), respectively, P<0.05], higher wet lung weight [3.62 ± 0.91 vs 1.69 ± 0.48 and 1.44 ± 0.20 g, respectively, P<0.05], and higher wet lung weight/dry lung weight ratio [18.14 (range 11.55-26.31) vs 7.80 (range 4.79-12.18), and 6.34 (range 5.92-7.04), respectively, P<0.05]. Total cell and neutrophil counts were higher in group 3 compared to groups 1 and 2 (P<0.05), as were baseline TNF-alpha concentrations [134 (range <10-386) vs 16 (range <10-24), and 17 pg/ml (range <10-23), respectively, P<0.05]. Serum TNF-alpha concentrations reached a higher level in group 3, but without statistical significance. These results suggest that mechanical ventilation with high V T induces lung injury with inflammatory characteristics. This ventilatory strategy can affect the release of TNF-alpha in the lungs and can reach the systemic circulation, a finding that may have relevance for the development of a systemic inflammatory response.
Resumo:
Matrix metalloproteinases (MMP) are considered to be key initiators of collagen degradation, thus contributing to bone resorption in inflammatory diseases. We determined whether subantimicrobial doses of doxycycline (DX) (<=10 mg kg-1 day-1), a known MMP inhibitor, could inhibit bone resorption in an experimental periodontitis model. Thirty male Wistar rats (180-200 g) were subjected to placement of a nylon thread ligature around the maxillary molars and sacrificed after 7 days. Alveolar bone loss (ABL) was measured macroscopically in one hemiarcade and the contralateral hemiarcade was processed for histopathologic analysis. Groups of six animals each were treated with DX (2.5, 5 or 10 mg kg-1 day-1, sc, 7 days) and compared to nontreated (NT) rats. NT rats displayed significant ABL, severe mononuclear cell influx and increase in osteoclast numbers, which were significantly reduced by 5 or 10 mg kg-1 day-1 DX. These data show that DX inhibits inflammatory bone resorption in a manner that is independent of its antimicrobial properties.
Resumo:
Ipomoea imperati (Convolvulaceae) lives on the sandy shores of the Brazilian coast and in other areas of the world. The anti-inflammatory activity of a methanol-water extract of the leaves of I. imperati was investigated in experimental models of acute and subchronic inflammation. Topical application of the extract (10 mg/ear) inhibited mouse ear edema induced by croton oil (89.0 ± 1.3% by the lipid fraction with an IC50 of 3.97 mg/ear and 57.0 ± 1.3% by the aqueous fraction with an IC50 of 3.5 mg/ear) and arachidonic acid (42.0 ± 2.0% with an IC50 of 4.98 mg/ear and 31.0 ± 2.0% with an IC50 of 4.72 mg/ear). Phospholipase A2, purified from Apis mellifera bee venom, was also inhibited by the extract (5.0 mg/ml lipid and aqueous fraction) in vitro in a dose-dependent manner (85% by the lipid fraction with an IC50 of 3.22 mg/ml and 25% by the aqueous fraction with an IC50 of 3.43 mg/ml). The methanol-water extract of I. imperati (1000 mg/kg) administered by the oral route also inhibited the formation of cotton pellet-induced granulomas (73.2 ± 1.2% by the lipid fraction and 56.14 ± 2.7% by the aqueous fraction) and did not cause gastric mucosal lesions. I. imperati extracts (10 mg/ml) also inhibited in a dose-dependent manner the muscle contractions of guinea pig ileum induced by acetylcholine and histamine (IC50 of 1.60 mg/ml for the lipid fraction and 4.12 mg/ml for the aqueous fraction). These results suggest the use of I. imperati as an anti-inflammatory and antispasmodic agent in traditional medicine.
Resumo:
The pathogenesis of nonsteroidal anti-inflammatory drug (NSAID) enteropathy is a complex process involving the uncoupling of mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase (COX). Rofecoxib, a selective inhibitor of COX-2, has shown less gastric damage, but the same beneficial effect is not clear in the case of the small bowel. Fifty-seven male Wistar rats (250-350 g) were divided into three groups (N = 19 each) to evaluate the effect of this NSAID on the rat intestine. The groups received 2.5 mg/kg rofecoxib, 7.5 mg/kg indomethacin or water with 5% DMSO (control) given as a single dose by gavage 24 h before the beginning of the experiment. A macroscopic score was used to quantify intestinal lesions and intestinal permeability was measured using [51Cr]-ethylenediaminetetraacetic acid ([51Cr]-EDTA). The extent of intestinal lesion, indicated by a macroscopic score, was significantly lower when rofecoxib was administered compared to indomethacin (rofecoxib = 0.0 vs indomethacin = 63.6 ± 25.9; P < 0.05) and did not differ from control. The intestinal permeability to [51Cr]-EDTA was significantly increased after indomethacin (control = 1.82 ± 0.4 vs indomethacin = 9.12 ± 0.8%; P < 0.0001), but not after rofecoxib, whose effect did not differ significantly from control (control = 1.82 ± 0.4 vs rofecoxib = 2.17 ± 0.4%; ns), but was significantly different from indomethacin (indomethacin = 9.12 ± 0.8 vs rofecoxib = 2.17 ± 0.4%; P < 0.001). In conclusion, the present data show that rofecoxib is safer than indomethacin in rats because it does not induce macroscopic intestinal damage or increased intestinal permeability.
Resumo:
We investigated the anti-inflammatory, antinociceptive and ulcerogenic activity of a zinc-diclofenac complex (5.5 or 11 mg/kg) in male Wistar rats (180-300 g, N = 6) and compared it to free diclofenac (5 or 10 mg/kg) and to the combination of diclofenac (5 or 10 mg/kg) and zinc acetate (1.68 or 3.5 mg/kg). The carrageenin-induced paw edema and the cotton pellet-induced granulomatous tissue formation models were used to assess the anti-inflammatory activity, and the Hargreaves model of thermal hyperalgesia was used to assess the antinociceptive activity. To investigate the effect of orally or intraperitoneally (ip) administered drugs on cold-induced gastric lesions, single doses were administered before exposing the animals to a freezer (-18ºC) for 45 min in individual cages. We also evaluated the gastric lesions induced by multiple doses of the drugs. Diclofenac plus zinc complex had the same anti-inflammatory and antinociceptive effects as diclofenac alone. Gastric lesions induced by a single dose administered per os and ip were reduced in the group treated with zinc-diclofenac when compared to the groups treated with free diclofenac or diclofenac plus zinc acetate. In the multiple dose treatment, the complex induced a lower number of the most severe lesions when compared to free diclofenac and diclofenac plus zinc acetate. In conclusion, the present study demonstrates that the zinc-diclofenac complex may represent an important therapeutic alternative for the treatment of rheumatic and inflammatory conditions, as its use may be associated with a reduced incidence of gastric lesions.
Resumo:
The anti-inflammatory effects of long-term ethanol intoxication were determined during ethanol treatment and withdrawal on the basis of neutrophil and eosinophil migration, hind paw edema and mast cell degranulation. Male Wistar rats (180-200 g, around 2 months of age) were exposed to increasing concentrations of ethanol vapor over a 10-day period. One group was evaluated immediately after exposure (treated group - intoxicated), and another was studied 7 h later (withdrawal group). Ethanol inhalation treatment significantly inhibited carrageenan- (62% for the intoxicated group, N = 5, and 35% for the withdrawal group, N = 6) and dextran-induced paw edema (32% for intoxicated rats and 26% for withdrawal rats, N = 5 per group). Ethanol inhalation significantly reduced carrageenan-induced neutrophil migration (95% for intoxicated rats and 41% for withdrawn rats, N = 6 per group) into a subcutaneous 6-day-old air pouch, and Sephadex-induced eosinophil migration to the rat peritoneal cavity (100% for intoxicated rats and 64% for withdrawn rats, N = 6 per group). A significant decrease of mast cell degranulation was also demonstrated (control, 82%; intoxicated, 49%; withdrawn, 51%, N = 6, 6 and 8, respectively). Total leukocyte and neutrophil counts in venous blood increased significantly during the 10 days of ethanol inhalation (leukocytes, 13, 27 and 40%; neutrophils, 42, 238 and 252%, respectively, on days 5, 9 and 10, N = 7, 6 and 6). The cell counts decreased during withdrawal, but were still significantly elevated (leukocytes, 10%; neutrophils, 246%, N = 6). These findings indicate that both the cellular and vascular components of the inflammatory response are compromised by long-term ethanol intoxication and remain reduced during the withdrawal period.
Resumo:
The release of reactive oxygen specie (ROS) by activated neutrophil is involved in both the antimicrobial and deleterious effects in chronic inflammation. The objective of the present investigation was to determine the effect of therapeutic plasma concentrations of non-steroidal anti-inflammatory drugs (NSAIDs) on the production of ROS by stimulated rat neutrophils. Diclofenac (3.6 µM), indomethacin (12 µM), naproxen (160 µM), piroxicam (13 µM), and tenoxicam (30 µM) were incubated at 37ºC in PBS (10 mM), pH 7.4, for 30 min with rat neutrophils (1 x 10(6) cells/ml) stimulated by phorbol-12-myristate-13-acetate (100 nM). The ROS production was measured by luminol and lucigenin-dependent chemiluminescence. Except for naproxen, NSAIDs reduced ROS production: 58 ± 2% diclofenac, 90 ± 2% indomethacin, 33 ± 3% piroxicam, and 45 ± 6% tenoxicam (N = 6). For the lucigenin assay, naproxen, piroxicam and tenoxicam were ineffective. For indomethacin the inhibition was 52 ± 5% and diclofenac showed amplification in the light emission of 181 ± 60% (N = 6). Using the myeloperoxidase (MPO)/H2O2/luminol system, the effects of NSAIDs on MPO activity were also screened. We found that NSAIDs inhibited both the peroxidation and chlorinating activity of MPO as follows: diclofenac (36 ± 10, 45 ± 3%), indomethacin (97 ± 2, 100 ± 1%), naproxen (56 ± 8, 76 ± 3%), piroxicam (77 ± 5, 99 ± 1%), and tenoxicam (90 ± 2, 100 ± 1%), respectively (N = 3). These results show that therapeutic levels of NSAIDs are able to suppress the oxygen-dependent antimicrobial or oxidative functions of neutrophils by inhibiting the generation of hypochlorous acid.
Resumo:
Carpotroche brasiliensis is a native Brazilian tree belonging to the Oncobeae tribe of Flacourtiaceae. The oil extracted from its seeds contains as major constituents the same cyclopentenyl fatty acids hydnocarpic (40.5%), chaulmoogric (14.0%) and gorlic (16.1%) acids found in the better known chaulmoogra oil prepared from the seeds of various species of Hydnocarpus (Flacourtiaceae). These acids are known to be related to the pharmacological activities of these plants and to their use as anti-leprotic agents. Although C. brasiliensis oil has been used in the treatment of leprosy, a disease that elicits inflammatory responses, the anti-inflammatory and analgesic activities of the oil and its constituents have never been characterized. We describe the anti-inflammatory and antinociceptive activities of C. brasiliensis seed oil in acute and chronic models of inflammation and in peripheral and central nociception. The mixture of acids from C. brasiliensis administered orally by gavage showed dose-dependent (10-500 mg/kg) anti-inflammatory activity in carrageenan-induced rat paw edema, inhibiting both the edema by 30-40% and the associated hyperalgesia. The acid fraction (200 mg/kg) also showed significant antinociceptive activity in acetic acid-induced constrictions (57% inhibition) and formalin-induced pain (55% inhibition of the second phase) in Swiss mice. No effects were observed in the hot-plate (100 mg/kg; N = 10), rota-road (200 mg/kg; N = 9) or adjuvant-induced arthritis (50 mg/kg daily for 7 days; N = 5) tests, the latter a chronic model of inflammation. The acid fraction of the seeds of C. brasiliensis which contains cyclopentenyl fatty acids is now shown to have significant oral anti-inflammatory and peripheral antinociceptive effects.
Resumo:
Mice selected on the basis of an acute inflammatory response (AIR) can provide information about the immunopathological mechanisms of glomerulonephritis. We studied the differences between mice selected for a maximal AIR (AIRmax that attract more polymorphonuclear cells to the site of injury) or a minimal AIR (AIRmin that attract more mononuclear cells) in an experimental model of IgA nephropathy in order to investigate the effect of genetic background on glomerular disease progression and the participation of the monocyte chemoattractant protein-1 (MCP-1) chemokine. IgA nephropathy was induced by intraperitoneal ovalbumin injection and bile duct ligation in AIRmax and AIRmin mice. Histological changes, urinary protein/creatinine ratio, serum IgA levels, immunofluorescence for IgA, IgG and complement C3 fraction, immunohistochemistry for macrophages and MCP-1, and MCP-1 levels in macerated kidney were determined. Mesangial IgA deposition was seen only in AIRmin mice, which presented more renal lesions. Increased serum IgA levels (1.5 ± 0.4 vs 0.3 ± 0.1 mg/mL, P < 0.001), high glomerular MCP-1 expression and decreased monocyte/macrophage infiltration in the interstitial area (0.3 ± 0.3 vs 1.1 ± 0.9 macrophages/field, P < 0.05) were detected in AIRmin mice compared to AIRmax mice. No glomerular monocyte/macrophage infiltration was detected in either strain. In spite of the absence of IgA deposition, AIRmax mice presented discrete or absent mesangial proliferation. The study showed that there are differences between mice selected for AIRmax and AIRmin with respect to serum IgA levels, histological damage and MCP-1 chemokine production after ovalbumin injection in combination with bile duct ligation.
Resumo:
A concurrent prospective study was conducted from 2001 to 2003 to assess factors associated with adverse reactions among individuals initiating antiretroviral therapy at two public referral HIV/AIDS centers in Belo Horizonte, MG, Brazil. Adverse reactions were obtained from medical charts reviewed up to 12 months after the first antiretroviral prescription. Cox proportional hazard model was used to perform univariate and multivariate analyses. Relative hazards (RH) were estimated with 95% confidence intervals (CI). Among 397 charts reviewed, 377 (95.0%) had precise information on adverse reactions and initial antiretroviral treatment. Most patients received triple combination regimens including nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors and protease inhibitors. At least one adverse reaction was recorded on 34.5% (N = 130) of the medical charts (0.17 adverse reactions/100 person-day), while nausea (14.5%) and vomiting (13.1%) were the most common ones. Variables independently associated with adverse reactions were: regimens with nevirapine (RH = 1.78; 95% CI = 1.07-2.96), indinavir or indinavir/ritonavir combinations (RH = 2.05; 95% CI = 1.15-3.64), female patients (RH = 1.93; 95% CI = 1.31-2.83), 5 or more outpatient visits (RH = 1.94; 95% CI = 1.25-3.01), non-adherence to antiretroviral therapy (RH = 2.38; 95% CI = 1.62-3.51), and a CD4+ count of 200 to 500 cells/mm³ (RH = 2.66; 95% CI = 1.19-5.90). An independent and negative association was also found for alcohol use (RH = 0.55; 95% CI = 0.33-0.90). Adverse reactions were substantial among participants initiating antiretroviral therapy. Specially elaborated protocols in HIV/AIDS referral centers may improve the diagnosis, management and prevention of adverse reactions, thus contributing to improving adherence to antiretroviral therapy among HIV-infected patients.
Resumo:
Trypanosoma cruzi infection and nonsteroidal anti-inflammatory drugs inhibit colorectal carcinogenesis by mechanisms not completely known and metallothionein proteins (MTs) may be involved in this process. Sixty-six male Wistar rats weighing 90 to 120 g were randomly divided into seven groups (GI to GVII). GI, GII and GIII animals were subcutaneously infected with 200,000 trypomastigote forms of the Y strain of T. cruzi. After 8 weeks, GI, GII, GIV, and GVI were injected with one weekly subcutaneous dose of 12 mg/kg dimethylhydrazine for 4 weeks. In sequence, GI, GIV and GV were treated with nimesulide (10 mg/kg per dose, five times per week for 8 weeks). Groups I, III, IV, and VI had 12 animals, and each of the other groups had 6 animals. All the animals were euthanized 8 weeks after the last dimethylhydrazine injection. The colons were fixed and processed for MT immunohistochemistry. The index of MT-overexpressing colonic crypts (MTEC) was estimated as the percentage of MT-stained crypts in relation to the total number of crypts scored. Five hundred crypts per animal were scored. Data were analyzed by the Kruskal-Wallis test followed by the Dunn test. There was an increase in MTEC index in the groups either infected with T. cruzi or treated with nimesulide or both infected and treated when compared to control (401, 809, and 1011%, respectively). We suggest that the increased formation of MTEC may be related to the protection against carcinogenesis provided both by T. cruzi infection and nimesulide.
Resumo:
Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM <10 µm; N = 30). Rats continuously breathing polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 ± 0.51;P-20: 5.01 x 105 ± 0.81; P < 0.05) and in lipid peroxidation ([MDA] nmol/mg protein: C-20: 0.148 ± 0.01; P-20: 0.226 ± 0.02; P < 0.05). Shorter exposure (6 h) and intermittent 5-h exposures over a period of 4 days did not cause significant changes in leukocytes. Lipid damage resulting from 20-h exposure to particulate air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.