138 resultados para Infiltrating Lymphocytes
Resumo:
In order to study the kinetics and composition of the polyclonal B-cell activation associated to malaria infection, antigen-specific and non-specific B-cell responses were evaluated in the spleens of mice infected with Plasmodium yoelii 17 XL or injected with lysed erythrocytes or plasma from P. yoelii infected mice or with P. falciparum culture supernatants. Spleen/body weigth ratio, numbers of nucleated spleen cells and Immunoglobulin-containing and Immunoglobulin-secreting cells increased progressively during the course of infection,in parallel to the parasitemia. A different pattern of kinetics was observed when anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell plaque forming cells response were studied: maximum values were observed at early stages of infection, whereas the number of total Immunoglobulin-containing and Immunoglobulin-secreting cells were not yet altered. Conversely, at the end of infection, when these latter values reached their maximum, the anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell specific responses were normal or even infranormal. In mice injected with Plasmodium-derived material, a higher increase in antigen-specific PFC was observed, as compared to the increase of Immunoglobulin-containing and Immunoglobulin-secreting cell numbers. This suggested a "preferential" (antigen-plus mitogen-induced) stimulation of antigen-specific cells rather than a generalized non-specific (mitogen-induced) triggering of B-lymphocytes. On the basis of these and previous results, it is suggested that polyclonal B-cell activation that takes place during the course of infection appears as a result of successive waves of antigen-specific B-cell activation.
Resumo:
Studies in mice have shown that immunity to malaria sporozoites is mediated primarily by citotoxic T lymphocytes (CTL) specific for epitopes within the circumsporozoite (CS) protein. Humans, had never been shown to generate CTL against any malaria or other parasite protein. The design of a sub-unit vaccine for humans ralies on the epitopes recognized by CTL being identified and polymorphisms therein being defined. We have developed a novel technique using an entire series of overlapping synthetic peptides to define the epitopes of the Plasmodium falciparum CS protein recognized by human CTL and have analyzed the sequence variation of the protein with respect to the identified CTL epitopic domain. We have demonstrated that some humans can indeed generate CTL. against the P. falciparum CS protein. Furthermore, the extent of variation observed for the CTL recognition domain is finite and the combination of peptides necessary for inclusion in a polyvalent vaccine may be small. If ways can be found to increase immune responsiveness, then a vaccine designed to stimulate CS protein-specific CTL activity may prevent malaria.
Resumo:
The dysregulation of the immune response by malaria parasite has been considered as a possible constraint to the effectiveness of malaria vaccination. In spite of the important role interleukin-I (IL-1) in malaria are lacking. We found that only 2 out of 35 subjectswith acute malaria showed increased levels of serum IL-1 alpha by enzyme immunoassay. To assess whether IL-1 could interfere with T- lymphocyte responses, blood mononuclear cells from patients infected with Plasmodium falciparum, P. vivax, or healthy subjects were cultured with phytohemagglutinin, and lymphocyte proliferation measured 72h later by 3H-thymidine incorporation. Our data showed that T-lymphocyte responses are depressed both in P. falciparum (10,500 ñ 2,900) and P. vivax malaria (13,000 ñ 3,300), as compared to that of healthy individuals (27,000 ñ 3,000). Addition of IL-1 partially reserved depression of malaria lymphocytes, but had no effect on normal cells. On the other hand, T-lymphocytes from malaria infected-subjects presented a minimal decrease in proliferation, when cultured in the presence of exogenous PGE2. These data indicate the occurrence of two defects of immunoregulation in malaria: a deficiency of IL-1 production by monocytes/macrophages, and an increased resistance of lymphocytes to the antiproliferative effect of PGE2.
Resumo:
This paper discusses current evidence for the relationship between polyclonal lymphocyte activation, specific immunossupression with decreased resistance, and autoimmune pathology, that are all often found associated with infections by a variety of virus, bacteria and parasites . The central question of class determination of immune effector activities is considered in the context of the cellular targets for nonspecific mitogenic activities associated with infection. A model is presented to integrate these findings: mitogenens produced by the microorganism or the infected cells are preferentially active on CD5 B cells, the resulting over-production of IL-10 will tend to bias all immune activities in to a Th-2mode of effector functions, with high titers of polyclonal antibodies and litle or no production of gamma IFN and other "inflamatory"lymphokines that often mediate resistance. In turn these conditions allow for parasite persistence and the corresponding long-term disregulation of self-directed immune reactivities, resulting in autoimmunity in the chronic phase. This model would predict that selective immunization with the mitogenic principles involved in desregulation, could stand better chances than strategies of vaccination based on immunopotentiation against othere, functionally neutral antigenic epitopes. It is argued, however, that the complexity of immune responses and their regulation together with our ignorance on the genetic controls of class-determination, offer poor prospects for a scientifically-based, rational development of vaccines in the near future. It is suggested that empirically-based and technologically developed vaccines might suceed, while basic scientific approaches are reinforced and given the time provide a better understanding of those process.
Resumo:
Milky spots (MS), considered by the authors as a Coelomatic Lympho-myelopoietic Organ (CLMO), present a strong reactivity during experimental schistosomal mansoni infection, characterized by an increase of lymphocytes, macrophages, plasmocytes, mast cells, neutrophils and expression of eosinophil metaplasia. Intraperitoneal injection of purified Schistosoma mansoni (Sm) eggs provoked a rise in the number and size of MS, which developed the sessile marginal and pedunculated types. The authors conclude that egg antigens are, at least partially, responsible for MS reactivity during Sm infection.
Resumo:
A kinetic study of the cells present in the spleen of BALB/c mice infected with Schistosoma mansoni was carried out. The lymphocytes were evaluated phenotypically with monoclonal antibodies and the effect of splenectomy on the modulation of periovular granuloma was also investigated. The infected mice had proportional increases in the numbers of neutophils, plasma cells, macrophages and eosinophils in the spleen. The largest number of neutrophil, plasma cells and macrophage were found between the 8th and the 12th week of infection, while the amount of eosinophils were higher later on, around the 20th week. The lymphocytes phenotipically characterized as Thy 1.2, Lyt 1.2 (CD4) increased mildly in proportional numbers. However, the percentage of lymphocytes with the Lyt 2.2 (CD8) phenotype, which is characteristic of supressor and cytotoxic T cells, increased significantly with the progress of the disease. The numbers of B lymphocytes, which comprise 50% of the mononuclear cells present in the spleen, increased significantly till the 16th week they began to decrease. The mean diameters of periovular granulomas were comparatively similar in both experimental groups (splenectomized and non-splenectomized mice). However, the evolutive types of granuloma (exudative, intermediate and fibrous) in splenectomized mice were proprtionally different from those of non splenectomized mice in the 16th and 24th week of infection. It is inferred that lymphonodes or other secondary lymphoide organs, in the abscence of the spleen, assume a modulating action on periovular granulomas, although the evolution of the granulomas is somehow delayed in splenectomized mice.
Resumo:
The lectin from Dioclea grandiflora (Mart.) that selectively binds glucose and mannose, when subcutaneously injected in mouse induces an inflammatory cutaneous reaction whose histological analysis reveals an hemorrhagic ulceration with exudative reaction accompanied by an influx of polymorphonuclear leukocytes and giant cells. The presence of lymphocytes and plasma cells in the lesion was insignificant. In order to characterize the in vivo action of inflammatory factors generated by this lesion, distinct lines of mice were used: high and low antibody responder mice; the genetically selected mice to the acute phase of inflammatory reaction; lines of mice deficient in C5, a protein of the complement system. It is shown that the lectin of D. grandiflora acts as an inflammatory agent probably promoting exocytosis and release of mediators.
Resumo:
Calomys callosus a wild rodent, is a natural host of Trypanosoma cruzi. Twelve C. callosus were infected with 10(5) trypomastigotes of the F strain (a myotropic strain) of T. cruzi. Parasitemia decreased on the 21 st day becoming negative around the 40th day of infection. All animals survived but had positive parasitological tests, until the end of the experiment. The infected animals developed severe inflammation in the myocardium and skeletal muscle. This process was pronounced from the 26 th to the 30th day and gradually subsided from the 50 th day becoming absent or residual on the 64 th day after infection. Collagen was identified by the picro Sirius red method. Fibrogenesis developed early, but regression of fibrosis occurred between the 50th and 64th day. Ultrastructural study disclosed a predominance of macrophages and fibroblasts in the inflammatory infiltrates, with small numbers of lymphocytes. Macrophages had active phagocytosis and showed points of contact with altered muscle cells. Different degrees of matrix expansion were present, with granular and fibrilar deposits and collagen bundles. These alterations subsided by the 64th days. Macrophages seem to be the main immune effector cell in the C. callosus model of infection with T. cruzi. The mechanisms involved in the rapid fibrogenesis and its regression deserve further investigation.
Resumo:
Given the suspected role of mycobacteria in the establishment of disorders with an autoimmune background and joint damage, a study was conducted to analize whether rheumatic symptoms were likely to be present in tuberculosis (TB) patients. To this end, 330 patients with a bacteriologic confirmation of tuberculosis were investigated for the presence of arthritic complaints. The latter were recorded in five of them with rheumatic symptoms mostly involving interphalangeal and metacarpophalanged joints, and preceding the clinical manifestations of the TB illness. Three out of these five patients remained arthritic by the time of the bacteriologic conversion and fulfilled the criteria for the diagnosis of rheumatoid arthritis. In the two remaining patients sputum negativization was accompanied by a disappearance of rheumatic manifestations. These patients were also assessed for their peripheral levels of major T cell subsets as well as for the presence of autoantibodies. Comparisons with a series of non-arthritic TB cases, rheumatoid arthritis patients, and controls revealed that presence of rheumatic manifestations was associated with a different profile of autoantibody formation and T cell subset changes. Evidence recorded in the present study indicates that joint affectation in TB is a rare event, being rather the exception than the rule.
Resumo:
Reactivation of chronic chagasic patients may occur upon use of immunosuppressive drugs related to kidney or heart transplantation or when they are affected by concomitant HIV infection. This recrudescence, however, does not occur in all chagasic patients exposed to immunosuppressive agents. We therefore investigated the influence of Trypanosoma cruzi strains in the recrudescence of the parasitism in mice at the chronic phase treated with cyclophosphamide, an immunosuppressor that blocks lymphocytes DNA synthesis and therefore controls B cells response. A large variation was detected in the percentages of newly established acute phases in the groups of mice inoculated with the different strains. We suggest that reactivation of chronic T. cruzi infections is influenced by the parasite intrinsic characteristics, a phenomenon that might occur in the human disease.
Resumo:
The frequency of asymptomatic infection among relatives and neighbors of cases of visceral leishmaniasis (VL) was compared and characterization of the immunological response in these subjects was performed. Cases were from a new endemic area, close to the beach and near Salvador, capital of the State of Bahia, Brazil. The characterization of asymptomatic infection was made using a skin reaction test and detection of antibody to Leishmania chagasi by the ELISA test. To characterize the immunological response of these subjects with asymptomatic L. chagasi infection the cytokines profile and the lymphoproliferative response were determined after stimulation of lymphocytes by L. chagasi antigen. There was no difference in the frequency of L. chagasi infection in relatives (45%) and in neighbors (27%) of cases of VL (P>0.05). The immunological response from these subjects was characterized by high production of IFN-g and a low production of IL-10 and a good lymphoproliferative response to L. chagasi antigen
Resumo:
To evaluate the effect of BCG vaccination and T lymphocyte subpopulations on the reactivity to the tuberculin skin test, 113 asymtomatic HIV+ individuals were tuberculin tested by intradermal injection of 5TU of purified protein derivative and the levels of circulating lymphocyte (CD3, CD4 and CD8) subpopulations determined by indirect immunofluorescence. Ninety-two percent of the subjects included in the study were males. The mean age of the group was 32.1±7.4 years. Sixty-two percent presented a BCG scar. However, only 22% exhibited positive tuberculin reactions (³5mm) irrespective of the presence of the BCG scar. Tuberculin positive individuals exhibited higher CD4+ cell counts (p=0.004) and CD4+/CD8+ ratios (p=0.006) than tuberculin negative (<5mm) HIV+ individuals. The number of individuals with positive tuberculin reactions was significantly higher in subjects with more than 500 CD4+ lymphocytes/ml (p=0.02) or CD4+/CD8+ ratios ³1.12 (p=0.002). These results suggest that a prior BCG vaccination does not influence the reactivity to the tuberculin skin test in HIV+ asymptomatic individuals and that the number of CD4+ lymphocytes and the CD4+/CD8+ ratio positively correlate with the tuberculin reactivity
Resumo:
Administration of an antifibrotic agent as an adjunct to antihelmintic treatment with the objective of morbidity reduction was investigated in the murine schistosomiasis mansoni model. Antifibrotic, ß-aminopropionitrile treatment has a profound effect on the cellular matrix composition of the liver granuloma of Schistosoma mansoni infected mice when given alone, resulting in increase macrophage infiltration. These macrophages, in response to stimulation with soluble egg antigen or lipopolysaccharide produced elevated levels of nitric oxide but low levels of tumor necrosis factor alpha compared to untreated infected mice. This also correlated with reduced liver granuloma size. In spite of low numbers of eggs in the liver, mice receiving a combine treatment had a high level of resistance to a challenge infection compared with mice receiving only praziquantel. Those mice also exhibited a reduced lymphocyte proliferative response, similar to that of infected untreated mice. Antifibrotic treatment has an impact on the dynamic of the cellular nature of granulomas and impacts on the host immunity to infection
Resumo:
Eosinophil recruitment is a characteristic feature of a number of pathological conditions and was the topic of the recent International Symposium on allergic inflammation, asthma, parasitic and infectious diseases (Rio de Janeiro, June 3-5, 1996). Since interleukin5 (IL5) is believed to regulate the growth, differentiation and activation of eosinophils (Coffman et al. 1989, Sanderson 1992), the role of eosinophils and IL5 are closely linked. Although IL5 specifically regulates eosinophilia in vivo and this is its most well established activity, it is becoming clear that IL5 also has other biological effects. The recent derivation of an IL5 deficient mouse (Kopf et al. 1996), provides a model for exploring not only the role of IL5 and eosinophils but also other novel activities of IL5. Of note is that although the IL5 deficient mice cannot elicit a pronounced eosinophilia in response to inflammatory stimulation following aeroallergen challenge or parasite infection they still produce basal levels of eosinophils that appear to be morphologically and functionally normal. However, the basal levels of eosinophils appear insufficient for normal host defence as IL5 deficiency has now been shown to compromise defence against several helminth infections. In addition, IL5 deficient mice appear to have functional deficiencies in B-1 B lymphocytes and in IgA production.
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.