159 resultados para Geographic production
Resumo:
Asthmatics infected with Schistosoma mansoni have a less severe course of asthma and an inhibition of the Th2 inflammatory response that seems to be mediated by interleukin (IL-10). The objective of this study was to evaluate the capacity of some S. mansoni antigens to stimulate IL-10 production in vitro by cells of asthmatic infected individuals. Peripheral bloods mononuclear cells were stimulated with the S. mansoni recombinant antigens Sm22.6, Sm14, P24, and PIII antigen. IL-10 was measured in the supernatants of cultures. As the recombinant antigens were cloned in Escherichia coli, we blocked contaminant endotoxin with polymyxin B added to the cultures. We demonstrated that all antigens used drove high production of IL-10 in S. mansoni infected individuals (n = 13, 408 ± 514 and 401 ± 383 pg/ml, 484 ± 245 pg/ml, 579 ± 468 pg/ml, respectively). In asthmatics infected with S. mansoni (n = 21) rP24 induced higher levels of IL-10 (565 ± 377 pg/ml) when compared to PIII, rSm14 and rSm22.6 (184 ± 209 pg/ml; 292 ± 243 pg/ml; 156 ± 247 pg/ml, respectively). Conclusion: the S. mansoni antigens evaluated in this study stimulated IL-10 production by cells from infected individuals and therefore they have the potential to be used as a modulator of the inflammatory response in asthma.
Resumo:
The need to develop a vaccine against schistosomiasis led several researches and our group to investigate proteins from Schistosoma mansoni as vaccine candidates. Sm22.6 is a protein from S. mansoni that shows high identity with Sj22.6 and Sh22.6 (79 and 91%, respectively). These proteins are associated with high levels of IgE and protection to reinfection. Previously, we have shown that Sm22.6 induced a partial protection of 34.5% when used together with Freund's adjuvant and produced a Th0 type of immune response with interferon-g and interleukin-4. In this work, mice were immunized with Sm22.6 alone or with aluminum hydroxide adjuvant and high levels of IgG, IgG1, and IgG2a were measured. Unfortunately, no protection was detected. Since IL-10 is a modulating cytokine in schistosomiasis, we also observed a high level of this molecule in splenocytes of vaccinated mice. In conclusion, we did not observe the adjuvant effect of aluminum hydroxide associated with rSm22.6 in protective immunity.
Resumo:
A total of 187 isolates from several clinical specimens were identified to species level as 129 Staphylococcus aureus strains and 58 coagulase-negative staphylococci (CNS) strains by the API Staph System (Biomerieux). Slime production was detected both by the conventional Christensen's method as well as by the Congo red agar method. Seventy-two strains of staphylococci isolates (38.5%) were found to be slime producers by Christensen's test tube method whereas 58 strains (31%) were slime positive with Congo red agar method. There was no statistically significant difference between the two methods for the detection of slime production (P > 0.05). Susceptibility of isolates against antimicrobial agents was tested by the disk diffusion method. Staphylococcal species had resistance to one or more antibiotics. Among the various antimicrobial agents, oxacillin (71.1%) and erythromycin (47.1%) showed higher resistance than most of the agents used against all isolates. Oxacillin resistant S. aureus (ORSA) and oxacillin resistant coagulase-negative staphylococci (ORCNS), 97 (75.2%) and 36 (62.1%) respectively were frequently observed in strains isolated from clinical materials. Among the ORSA strains, two strains were resistant to vancomycin. Moreover, 96 (74.4%) of 129 S. aureus strains were positive for blactamase enzyme. However, 78 (81.25%) of 96 b-lactamase positive S. aureus strains were b-lactamase positive ORSA isolates, but none of them had vancomycin resistance.
Resumo:
The Amazon forest is being exploited for timber production. The harvest removes trees, used by sand flies as resting sites, and decreases the canopy, used as refuges by some hosts. The present study evaluated the impact of the timber harvest, the abundance of sand flies, and their trypanosomatid infection rates before and after selective logging. The study was accomplished in terra-firme production forest in an area of timber harvest, state of Amazonas, Brazil. Sand fly catches were carried out in three areas: one before and after the timber harvest, and two control areas, a nature preservation area and a previously exploited area. The flies were caught by aspiration on tree trunks. Samples of sand flies were dissected for parasitological examination. In the site that suffered a harvest, a larger number of individuals was caught before the selective extraction of timber, showing significant difference in relation to the number of individuals and their flagellate infection rates after the logging. The other two areas did not show differences among their sand fly populations. This fact is suggestive of a fauna sensitive to the environmental alterations associated with selective logging.
Resumo:
An important cytokine role in dengue fever pathogenesis has been described. These molecules can be associated with haemorrhagic manifestations, coagulation disorders, hypotension and shock, all symptoms implicated in vascular permeability and disease worsening conditions. Several immunological diseases have been treated by cytokine modulation and dexamethasone is utilized clinically to treat pathologies with inflammatory and autoimmune ethiologies. We established an in vitro model with human monocytes infected by dengue virus-2 for evaluating immunomodulatory and antiviral activities of potential pharmaceutical products. Flow cytometry analysis demonstrated significant dengue antigen detection in target cells two days after infection. TNF-alpha, IFN-alpha, IL-6 and IL-10 are produced by in vitro infected monocytes and are significantly detected in cell culture supernatants by multiplex microbead immunoassay. Dexamethasone action was tested for the first time for its modulation in dengue infection, presenting optimistic results in both decreasing cell infection rates and inhibiting TNF-alpha, IFN-alpha and IL-10 production. This model is proposed for novel drug trials yet to be applyed for dengue fever.
Resumo:
Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.
Resumo:
A randomized, double-blinded study evaluating the immunogenicity, safety and consistency of production of a combined diphtheria-tetanus-pertussis-Haemophilus influenzae type b vaccine entirely produced in Brazil by Bio-Manguinhos and Instituto Butantan (DTP/Hib-BM) was undertaken. The reference vaccine had the same DTP vaccine but the Hib component was produced using purified materials supplied by GlaxoSmithKline (DTP/Hib-GSK), which is registered and has supplied the Brazilian National Immunization Program for over more than five years. One thousand infants were recruited for the study and received vaccinations at two, four and six months of age. With respect to immunogenicity, the vaccination protocol was followed in 95.6% and 98.4% of infants in the DTP/Hib-BM and DTP/Hib-GSK groups, respectively. For the Hib component of the study, there was 100% seroprotection (>0.15 µg/mL) with all three lots of DTP/Hib-BM and DTP/Hib-GSK. The geometric mean titer (GMT) was 9.3 µg/mL, 10.3 µg/mL and 10.3 µg/mL for lots 1, 2 and 3 of DTP/Hib-BM, respectively, and the GMT was 11.3 g/mL for DTP/Hib-GSK. For diphtheria, tetanus and pertussis, seroprotection was 99.7%, 100% and 99.9%, respectively, for DTP/Hib-BM, three lots altogether and 99.2%, 100% and 100% for DTP/Hib-GSK. GMTs were similar across all lots and vaccines. Adverse events rates were comparable among the vaccine groups. The Brazilian DTP/Hib vaccine demonstrated an immunogenicity and reactogenicity profile similar to that of the reference vaccine.
Resumo:
The sandfly Lutzomyia longipalpis s.l. is the main vector of American Visceral Leishmaniasis. L. longipalpis s.l. is a species complex but until recently the existence of cryptic sibling species among Brazilian populations was a controversial issue. A fragment of paralytic (para), a voltage dependent sodium channel gene associated with insecticide resistance and courtship song production in Drosophila, was isolated and used as a molecular marker to study the divergence between two sympatric siblings of the L. longipalpis complex from Sobral, Brazil. The results revealed para as the first single locus DNA marker presenting fixed differences between the two species in this locality. In addition, two low frequency amino-acid changes in an otherwise very conserved region of the channel were observed, raising the possibility that it might be associated with incipient resistance in this vector. To the best of our knowledge, the present study represents the first population genetics analysis of insecticide resistance genes in this important leishmaniasis vector.
Resumo:
Fifty-five clinical and environmental Aspergillus fumigatus isolates from Mexico, Argentina, France and Peru were analyzed to determine their genetic variability, reproductive system and level of differentiation using amplified fragment length polymorphism markers. The level of genetic variability was assessed by measuring the percentage of polymorphic loci, number of effective alleles, expected heterozygocity and by performing an association index test (I A). The degree of genetic differentiation and variation was determined using analysis of molecular variance at three levels. Using the paired genetic distances, a dendrogram was built to detect the genetic relationship among alleles. Finally, a network of haplotypes was constructed to determine the geographic relationship among them. The results indicate that the clinical isolates have greater genetic variability than the environmental isolates. The I A of the clinical and environmental isolates suggests a recombining population structure. The genetic differentiation among isolates and the dendrogram suggest that the groups of isolates are different. The network of haplotypes demonstrates that the majority of the isolates are grouped according to geographic origin.
Resumo:
Seventy-one isolines of Anopheles campestris-like were established from wild-caught females collected from human-biting and animal-biting traps at 12 locations in Thailand. All isolines had an average branch summation of seta 2-VI pupal skins ranging from 20.3-30.0 branches, which is in the range of An. campestris (17-58 branches). They showed three different karyotypes based on the amount of extra heterochromatin in the sex chromosomes, namely Forms B (X2, Y2), E (X1, X2, X3, Y5) and a new karyotypic Form F (X2, X3, Y6). Form B has been found only in Chaing Mai and Kamphaeng Phet populations, while Forms E and F are widely distributed throughout the species range. Genetic crosses between the 12 isolines, which were arbitrarily selected as representatives of An. campestris-like Forms B, E and F, revealed genetic compatibility that provided viable progeny through F2 generations, suggesting a conspecific nature of these karyotypic forms. These results are supported by the very low intraspecies variation (genetic distance < 0.005) of ITS2, COI and COII from genomic DNA of the three karyotypic forms.
Resumo:
Experimental autoimmune encephalomyelitis (EAE) is mediated by CD4+ Th1 cells that mainly secrete IFN-γ and TNF-α, important cytokines in the pathophysiology of the disease. Spontaneous remission is, in part, attributed to the down regulation of IFN-γ and TNF-α by TGF-β. In the current paper, we compared weight, histopathology and immunological parameters during the acute and recovery phases of EAE to establish the best biomarker for clinical remission. Female Lewis rats were immunised with myelin basic protein (MBP) emulsified with complete Freund's adjuvant. Animals were evaluated daily for clinical score and weight prior to euthanisation. All immunised animals developed the expected characteristics of EAE during the acute phase, including significant weight loss and high clinical scores. Disease remission was associated with a significant reduction in clinical scores, although immunised rats did not regain their initial weight values. Brain inflammatory infiltrates were higher during the acute phase. During the remission phase, anti-myelin antibody levels increased, whereas TNF-α and IFN-γ production by lymph node cells cultured with MBP or concanavalin A, respectively, decreased. The most significant difference observed between the acute and recovery phases was in the induction of TNF-α levels in MBP-stimulated cultures. Therefore, the in vitro production of this cytokine could be used as a biomarker for EAE remission.
Resumo:
Thirty-eight strains of Shiga toxin-producing Escherichia coli (STEC) were characterised in terms of biochemical properties, enterohaemolysin production and plasmid carriage. A wide variation in the biochemical properties was observed among the STEC, with 14 distinct biotypes identified. Biotype 1 was the most common, found in 29% of the strains. Enterohaemolysin production was detected in 29% of the strains. Most of the bacterial strains (95%) carried one or more plasmids and considerable heterogeneity in size and combinations was observed. Seven distinct plasmid profiles were identified. The most common profile, characterised by the presence of a single plasmid of ~90 kb, was found in 50% of these strains. These data indicate extensive diversity among STEC strains. No correlation was found among biotype, serotype, enterohaemolysin production and plasmid profile.
Resumo:
This study evaluated two vaccine candidates for their effectiveness in protecting BALB/c mice against Leishmania chagasiinfection. These immunogenic preparations were composed of Leishmania amazonensisor Leishmania braziliensisantigenic extracts in association with saponin adjuvant. Mice were given three subcutaneous doses of one of these vaccine candidates weekly for three weeks and four weeks later challenged with promastigotes of L. chagasiby intravenous injection. We observed that both vaccine candidates induced a significant reduction in the parasite load of the liver, while the L. amazonensisantigenic extract also stimulated a reduction in spleen parasite load. This protection was associated with a suppression of both interleukin (IL)-10 and IL-4 cytokines by spleen cells in response to L. chagasiantigen. No change was detected in the production of IFN-γ. Our data show that these immunogenic preparations reduce the type 2 immune response leading to the control of parasite replication.
Resumo:
Toll-like receptors (TLRs) recognise pathogen-derived molecules and influence immunity to control parasite infections. This study aimed to evaluate the mRNA expression of TLRs 2 and 4, the expression and production of the cytokines interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17, IL-10 and transforming growth factor (TGF)-β and the production of nitric oxide (NO) in the spleen of mice infected with Leishmania chagasi. It also aimed to evaluate any correlations between mRNA expression TLR2 and 4 and cytokines and NO production. Infection resulted in increased TLR2-4, IL-17, TNF-α and TGF-β mRNA expression during early infection, with decreased expression during late infection correlating with parasite load. IFN-γ and IL-12 mRNA expression decreased at the peak of parasitism. IL-10 mRNA expression increased throughout the entire time period analysed. Although TGF-β, TNF-α and IL-17 were highly produced during the initial phase of infection, IFN-γ and IL-12 exhibited high production during the final phase of infection. IL-10 and NO showed increased production throughout the evaluated time period. In the acute phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17, NO, IL-10 and TGF-β expression and parasite load. During the chronic phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17 and TGF-β expression and parasite load. Our data suggest that infection by L. chagasi resulted in modulation of TLRs 2 and 4 and cytokines.
Resumo:
The presence of intestinal helminths can down-regulate the immune response required to control mycobacterial infection. BALB/c mice infected with Mycobacterium bovis following an infection with the intestinal helminth Strongyloides venezuelensis showed reduced interleukin-17A production by lung cells and increased bacterial burden. Also, small granulomas and a high accumulation of cells expressing the inhibitory molecule CTLA-4 were observed in the lung. These data suggest that intestinal helminth infection could have a detrimental effect on the control of tuberculosis (TB) and render coinfected individuals more susceptible to the development of TB.