127 resultados para ENTERIC NERVES
Resumo:
The maintenance of extracellular Na+ and Cl- concentrations in mammals depends, at least in part, on renal function. It has been shown that neural and endocrine mechanisms regulate extracellular fluid volume and transport of electrolytes along nephrons. Studies of sex hormones and renal nerves suggested that sex hormones modulate renal function, although this relationship is not well understood in the kidney. To better understand the role of these hormones on the effects that renal nerves have on Na+ and Cl- reabsorption, we studied the effects of renal denervation and oophorectomy in female rats. Oophorectomized (OVX) rats received 17β-estradiol benzoate (OVE, 2.0 mg·kg-1·day-1, sc) and progesterone (OVP, 1.7 mg·kg-1·day-1,sc). We assessed Na+ and Cl-fractional excretion (FENa+ and FECl-, respectively) and renal and plasma catecholamine release concentrations. FENa+, FECl-, water intake, urinary flow, and renal and plasma catecholamine release levels increased in OVX vs control rats. These effects were reversed by 17β-estradiol benzoate but not by progesterone. Renal denervation did not alter FENa+, FECl-, water intake, or urinary flow values vs controls. However, the renal catecholamine release level was decreased in the OVP (236.6±36.1 ng/g) and denervated rat groups (D: 102.1±15.7; ODE: 108.7±23.2; ODP: 101.1±22.1 ng/g). Furthermore, combining OVX + D (OD: 111.9±25.4) decreased renal catecholamine release levels compared to either treatment alone. OVE normalized and OVP reduced renal catecholamine release levels, and the effects on plasma catecholamine release levels were reversed by ODE and ODP replacement in OD. These data suggest that progesterone may influence catecholamine release levels by renal innervation and that there are complex interactions among renal nerves, estrogen, and progesterone in the modulation of renal function.
Resumo:
Immobilization, used in clinical practice to treat traumatologic problems, causes changes in muscle, but it is not known whether changes also occur in nerves. We investigated the effects of immobilization on excitability and compound action potential (CAP) and the ultrastructure of the rat sciatic nerve. Fourteen days after immobilization of the right leg of adult male Wistar rats (n=34), animals were killed and the right sciatic nerve was dissected and mounted in a moist chamber. Nerves were stimulated at a baseline frequency of 0.2 Hz and tested for 2 min at 20, 50, and 100 Hz. Immobilization altered nerve excitability. Rheobase and chronaxy changed from 3.13±0.05 V and 52.31±1.95 µs (control group, n=13) to 2.84±0.06 V and 59.71±2.79 µs (immobilized group, n=15), respectively. Immobilization altered the amplitude of CAP waves and decreased the conduction velocity of the first CAP wave (from 93.63±7.49 to 79.14±5.59 m/s) but not of the second wave. Transmission electron microscopy showed fragmentation of the myelin sheath of the sciatic nerve of immobilized limbs and degeneration of the axon. In conclusion, we demonstrated that long-lasting leg immobilization can induce alterations in nerve function.
Resumo:
The rat models currently employed for studies of nerve regeneration present distinct disadvantages. We propose a new technique of stretch-induced nerve injury, used here to evaluate the influence of gabapentin (GBP) on nerve regeneration. Male Wistar rats (300 g; n=36) underwent surgery and exposure of the median nerve in the right forelimbs, either with or without nerve injury. The technique was performed using distal and proximal clamps separated by a distance of 2 cm and a sliding distance of 3 mm. The nerve was compressed and stretched for 5 s until the bands of Fontana disappeared. The animals were evaluated in relation to functional, biochemical and histological parameters. Stretching of the median nerve led to complete loss of motor function up to 12 days after the lesion (P<0.001), compared to non-injured nerves, as assessed in the grasping test. Grasping force in the nerve-injured animals did not return to control values up to 30 days after surgery (P<0.05). Nerve injury also caused an increase in the time of sensory recovery, as well as in the electrical and mechanical stimulation tests. Treatment of the animals with GBP promoted an improvement in the morphometric analysis of median nerve cross-sections compared with the operated vehicle group, as observed in the area of myelinated fibers or connective tissue (P<0.001), in the density of myelinated fibers/mm2 (P<0.05) and in the degeneration fragments (P<0.01). Stretch-induced nerve injury seems to be a simple and relevant model for evaluating nerve regeneration.
Resumo:
The isolation of heat-stable enterotoxin (STa) from Escherichia coli and cholera toxin from Vibrio cholerae has increased our knowledge of specific mechanisms of action that could be used as pharmacological tools to understand the guanylyl cyclase-C and the adenylyl cyclase enzymatic systems. These discoveries have also been instrumental in increasing our understanding of the basic mechanisms that control the electrolyte and water balance in the gut, kidney, and urinary tracts under normal conditions and in disease. Herein, we review the evolution of genes of the guanylin family and STa genes from bacteria to fish and mammals. We also describe new developments and perspectives regarding these novel bacterial compounds and peptide hormones that act in electrolyte and water balance. The available data point toward new therapeutic perspectives for pathological features such as functional gastrointestinal disorders associated with constipation, colorectal cancer, cystic fibrosis, asthma, hypertension, gastrointestinal barrier function damage associated with enteropathy, enteric infection, malnutrition, satiety, food preferences, obesity, metabolic syndrome, and effects on behavior and brain disorders such as attention deficit, hyperactivity disorder, and schizophrenia.
Resumo:
Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca2+dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism.
Resumo:
Abstract Peripheral nerves have the unique capability to regenerate after injury. Insights into regeneration of peripheral nerves after injury may have implications for neurodegenerative diseases of the nervous system. We investigated the ability of polysaccharide from Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats by daily oral administration. In sensory functional recovery test, the time taken for the rats to withdraw its hind limb from contact with the hot plate was measured. The test revealed acceleration of sensory recovery in the polysaccharide group compared to negative controls. Further, peripheral nerve injury leads to changes at the remotely located DRG containing cell bodies of sensory neurons. Immunofluorescence studies showed that Akt and p38 MAPK were expressed in DRG and strongly upregulated in polysaccharide group after peripheral nerve injury. The intensity of endothelial cells antigen-1 that recognized endothelial cells in the blood vessels of distal segments in crushed nerves was significantly higher in the treated groups than in the negative control group. Our findings suggest that H. erinaceus is capable of accelerating sensory functional recovery after peripheral nerve injury and the effect involves the activation of protein kinase signaling pathways and restoration of blood-nerve barrier.
Resumo:
Abstract Bovine Spongiform Encephalopathy (BSE) is a virulent disease which may infect by affecting the central nervous system (CNS) tissues in cattle and causes degeneration in nerves. Central nervous system tissues such as brain and spinal cord which are classified as specified risk materials (SRMs) are regarded to be main source of infection. The contamination of the meat with the specific risk materials (SRMs) can occur in phases of slaughter, fragmentation of carcass and processing. This study was conducted in order to investigate the existence of CNS tissues in raw meat ball (cig kofte) which is commonly consumed in the Southeastern Region of Turkey, particularly in Şanlıurfa. For this purpose, 145 samples of raw meat ball were tested. The enzyme-linked immunosorbent assay (ELISA) kits (Ridascreen risk material 10/5, R-biofarm GmbH) which determine glial fibrillary acidic protein (GFAP) as determinant were used. As a result of the analyses, positivity was detected in 21 of totally 145 samples of raw meat ball (14.48%). 6 (4.14%) of the samples gave low level of positivity (≥ 0.1 standard absorbance), 10 (6.90%) gave medium level of positivity (>0.2 standard absorbance) and 5 (3.45%) gave high level of positivity (≥0.5 standard absorbance). As a consequence, meats are contaminated in any phase of both slaughter and meat production even if accidentally. Regarding this matter, necessary measures should be taken and hygiene rules should be applied.