130 resultados para Cotton - Fertilizer
Resumo:
Two nutrient foliar sprays, namely Ferti-Foliage (21-21 -21) and Wuxal (9-9-7), were applied to peanut plants under field conditions. Both were applied 23 days after germination of seeds, at the beginning of flowering, and during flowering. Other treatments were application of NPK fertilizer (9-30-16, 250 kg/ha) into the soil and check (no fertilizer). The experiment was carried out on a latosolic B "Terra Roxa" soil, sowing being made on March 6th and harvest on July 10th. Statistical analysis showed no significant differences amongst treatments. However, certain treatments had better yields. For instance, application of Ferti-Foliage showed a tendency to increasing number of pods per plant and number of seeds per pod. Same product when applied at the beginning of flowering had a tendency to increase production of seeds and of forage. Application of NPK (9-30-16) into the soil showed similar results.
Resumo:
The effects of the application of a macronutrient foliar spray combined with micronutrients and growth regulators (Unifol) on peanut grown in a soil with high fertility were investigated. A control without fertilizer and a soil fertilization (250 kg/ha) with NPK 9-30-16 were also established. Other treatments were as follows: Unifol fertilizer (18-12 16) applied 23 days after germination: Unifol (18-12-6) applied at the beginning of flowering; Unifol (18-12-6) applied during flowering, and Unifol (18-12-6) applied 23 days after germination plus Unifol (7-23-7) at the beginning of flowering. No significant differences were found amongst treatments, but certain treatments showed higher productivity e given Unifol fertilizer (18-12-6) applied 23 days after germination plus Unifol (7-23-7) at the flower anthesis. In this treatment, the number of pods, weight of seeds and production of seeds were higher. Best production of forage occurred in the treatment receiving soil fertilization.
Resumo:
The comparative response of three sorghum (E-57, TEY 101 and C- 102) and of three corn cultivars (HMD-7974, Centralmex and Piranão) to N, P and K applications was studied in a soil from Anhembi, SP, classifield as Distrophic quartz sand (AQd) was studied. Leaf analyses were made to assess the nutritional status of the two crops. Main conclusions were the following. 1. Sorghum yieldel more than corn; 2. Both sorghum and corn varieties showed different capacities to absorb N, P and K from the soil and to fertilizer application; 3. There was no response to K2O fertilization; 4. Only Piranão increased yield when suplemented with a mixture of micronutrientes; 5. Direct relationships between rates of N and P2O5 and yield and leaf content were found; 6. Direct relationships between rates of N and P2O5 and yield and leaf content were found; 7. The following leaf levels were considered to be adequate, respectively for sorghum and corn: N - 2,00 - 2,25%, 3,25 - 3,50%; P - 0,30 - 0,40, 0,45 - 0,50; K -2,00 - 2,50, 2,20 - 2,40%; Ca - 0,20 - 0,40, 0,44- 0,72% Mg - 0,25 - 0,40, 0,34 - 0,60%; S - 0,50 - 0,70, 0,72 -0,80; Cu - 7 - 10, 11 - 15%; Fe - 84 - 170, 98 - 125%; Mn - 58 - 72, 66 - 85%; Zn - 10 - 14, 18 - 22; critical levels, however, do very depending upon cultivar.
Resumo:
O presente trabalho foi realizado com o objetivo de continuar os experimentos que visam o combate ao "ácaro branco" Polyphagotarsonemus latus (Banks, 1904) em algodoeiro. Quatro tratamentos foram aplicados em pulverização convencional e 2 outros produtos com "Electrodyn", num total de 7 tratamentos (com a testemunha). Vejamos quais são estes: A) testemunha; B) dicofol; C) bromopropilato; D) abamectina + alquenol multimetílico, sendo o último um feromônio; E) dicofol; F). profenofós e G) abamectina (Quadro 1). Os tratamentos C e E foram feitos com soluções especiais para "Electrodyn". A análise dos resultados demonstrou que os tratamentos E e D foram os melhores. Palavras-chave: Polyphagotarsonemus latus, defensivos químicos, ácaro branco, algodoeiro.
Resumo:
The author studied, the horizontal and vertical distribution of most common part of the flora and fauna of the bay of Guanabara at Rio de Janeiro. In this paper the eulittoral, poly, meso and oligohaline regions were localised and studied; and the first chart of its distribution was presented (fig. 2). The salinity of superficial waters was established through determinations based on 30 trips inside the buy for collecting biological materials. Some often 409 determinations which were previous reported together with the present ones served for the eleboration of a salinity map of the bay of Guanabara (fig. 1). This map of fig. 2 shows the geographic locations of the water regions. EULITTORAL WATER REGIME Fig. 3 shows the diagram scheme of fauna and flora of this regime. Sea water salinity 34/1.000, density mean 1.027, transparent greenish waters, sea coast with moderate bursting waves. Limpid sea shore with white sand, gneiss with the big barnacle Tetraclita squamosa var. stalactifera (Lam. Pilsbry. Vertical distributions: barna¬cles layers with a green region in which are present the oyster Ostrea pa-rasitica L., the barnacles Tetraclita, Chthamalus, Balanus tintinnabulum var. tintinnabulum (L.) e var. antillensis Pilsbry in connection with several mollusca and the sea beatle Isopoda Lygia sp. Covered by water and exposed to air by the tidal ritms, there is a stratum of brown animals that is the layer of mussels Mytilus perna L., with others brown and chestnut animals : the Crustacea Pachygrapsus, the little crab Porcellana sp., the stone crab Me-nippe nodifrons Stimpson, the sea stars Echinaster brasiliensis (Mull. & Tr.), Astropecten sp. and the sea anemones Actinia sp. Underneath and never visible there is a subtidal region with green tubular algae of genus Codium and amidst its bunches the sea urchin Lycthchinus variegatus (Agass.) walks and more deeply there are numerous sand-dollars Encope emarginata (Leske). The microplancton of this regime is Ceratiumplancton. POLYHALINE WATER REGIMB Water almost sea water, but directly influenced by continental lands, with rock salts dissolved and in suspension. Salinity: 33 to 32/1.000. This waters endure the actions of the popular nicknamed «water of the hill» (as the waters of mesohaline and oligohaline regimes), becoming suddenly reddish during several hours. That pheno¬menon returns several times in the year and come with great mortality of fishes. In these waters, according to Dr. J. G. FARIA there are species of Protozoa : Peridinea, the Glenoidinium trochoideum St., followed by its satellites which he thinks that they are able to secret toxical substances which can slaughter some species of fishes. In these «waters of the hill» was found a species of Copepoda the Charlesia darwini. In August 1946 the west shore of the Guanabara was plenty of killed fishes occupying a area of 8 feet large by 3 nautical miles of lenght. The enclosure for catching fishes in the rivers mouthes presents in these periods mass dead fishes. The phenomenon of «waters of the hill» appears with the first rains after a period of long dryness. MESOHALINE WATER REGIME Fig. 4 shows the the diagramm scheme. Salt or brackish water from 30 to 17/1.000 salinity, sometimes until 10/1.000. Turbid waters with mud in suspension, chestnut, claveyous waters; shore dirty black mud without waving bursting; the waters are warmer and shorner than those of the polihaline regime. Mangrove shore with the mangrove trees : Rhizophora mangle L., Avicennia sp., Laguncularia sp., and the »cotton tree of sea» Hibiscus sp. Fauna: the great land crab «guaimú» Cardisoma guanhumi Latr., ashore in dry firm land. There is the real land crab Ucides cordatus (L.) in wetting mud and in neigh¬ bourhood of the burrows of the fiddler-crabs of genus Uca. On stones and in the roots of the Rhizophora inhabits the brightly colored mangrove-tree-crab («aratu» Portuguese nickname) Goniopsis cruentata (Latreille) and the sparingly the big oyster Ostrea rhizophorae Guild. Lower is the region of barnacles Balanus amphitrite var. communis Darwin and var. niveus Darwin; Balanus tintinnabulum var. tintinnabulum (L.) doesn't grow in this brackish water; lower is the region of Pelecipoda with prepollency of Venus and Cytherea shell-fishes and the Panopeus mud crab; there are the sea lettuce Ulva and the Gastreropod Cerithium. The Paguridae Clibanarius which lives in the empty shells of Gasteropod molluscs, and the sessile ascidians Tethium plicatum (Lesuer) appears in some seasons. In the bottom there is a black argillous mud where the «one landed shrimps» Alpheus sp. is hidden. OLIGOHALINE WATER REGIME The salinity is lower than 10/1.000. average 8/1.000. There are no barnacles and no sea-beetles Isopods of genus Lygia; on the hay of the shore there are several graminea. This brackish water pervades by mouthes of rivers and penetrates until about 3 kilometers river above. While there is some salt dissolved in water, there are some mud crabs of the genus Uca, Sesarma, Metasesarma and Chasmagnatus. The presence of floating green plants coming from the rivers in the waters of a region indicated the oligohaline waters, with low salt content because when the average of NaCl increases above 8/1.000 these plants die and become rusty colored.
Resumo:
It is well known that the culture media used in the presumptive diagnosis of suspiciuous colonies from plates inoculated with stools for isolation of enteric organisms do not always correctly indicate the major groups of enterobacteria. In an effort to obtain a medium affording more exact indications, several media (1-9) have been tested. Modifications of some of these media have also been tested with the result that a satisfactory modification of Monteverde's medium was finaly selected. This proved to be most satisfactory, affording, as a result of only one inoculation, a complete series of basic indications. The modification involves changes in the formula, in the method of preparation and in the manner of storage. The formulae are: A. Thymol blue indicator: NaOH 0.1/N .............. 34.4 ml; Thymol blue .............. 1.6 g; Water .................... 65.6 ml. B. Andrade's indicator. C. Urea and sugar solution: Urea ..................... 20 g; Lactose ................... 30 g; Sucrose ................... 30 g; Water .................... 100 ml. The mixture (C.) should be warmed slightly in order to dissolve the ingredients rapidly. Sterilise by filtration (Seitz). Keep stock in refrigeratior. The modification of Monteverde's medium is prepared in two parts. Semi-solid part - Peptone (Difco) 2.0 g; NaCl 0.5 g; Agar 0.5 g; Water 100.0 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boil again for precipitation. Filter through cotton. Ad indicators "A" 0.3 ml and "B" 1.0 ml. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted semi-solid medium, maintained at 48-50ºC. Solid part - Peptone (Difco) 1.5 g; Trypticase (BBL) 0.5 g; Agar 2.0 g; Water 100,00 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boils again. Filter through cotton. Add indicators "A" 0.3 ml and "B" 1.0 ml; ferrous ammonium sulfate 0.02 g; sodiun thiosulfate 0.02 g. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted solid medium, maintained at 48-50ºC. Final medium - The semi-solid part is dispensed first (tubes about 12 x 120 mm) in 2.5 ml amounts and left to harden at room temperature, in vertical position. The solid part is dispensed over the hardened semi-solid one in amounts from 2.0 ml to 2.5 ml and left to harden in slant position, affording a butt of 12 to 15 mm. The tubes of medium should be subjected to a sterility test in the incubator, overnight. Tubes showing spontaneous gas bubbles (air) should then be discarded. The medium should be stored in the incubator (37ºC), for not more than 2 to 4 days. Storage of the tubes in the ice-box produces the absorption of air which is released as bubbles when the tubes are incubated at 37ºC after inoculation. This fact confirmed the observation of ARCHAMBAULT & McCRADY (10) who worked with liquid media and the aplication of their observation was found to be essential to the proper working conditions of this double-layer medium. Inoculation - The inoculation is made by means of a long straight needle, as is usually done on the triple sugar, but the needel should penetrate only to about half of the height of the semi-solid column. Indol detection - After inoculation, a strip of sterelized filter papaer previously moistened with Ehrlich's reagent, is suspended above the surface of the medium, being held between the cotton plug and the tube. Indications given - In addition to providing a mass of organisms on the slant for serological invetigations, the medium gives the following indications: 1. Acid from lactose and/or sucrose (red, of yellowsh with strains which reduce the indicators). 2. Gas from lactose and/or sucrose (bubbles). 3. H[2]S production, observed on the solid part (black). 4. Motility observed on the semi-solid part (tubidity). 5. Urease production, observed on solid and semi-solid parts (blue). 6. Indol production, observed on the strip of filter paper (red or purplish). Indol production is not observed with indol positive strains which rapidly acidify the surface o the slant, and the use of oxalic acid has proved to give less sensitive reaction (11). Reading of results - In most cases overnight incubation is enough; sometimes the reactions appear within only a few hours of incubation, affording a definitive orientation of the diagnosis. With some cultures it is necessary to observe the medium during 48 hours of incubation. A description showing typical differential reaction follows: Salmonella: Color of the medium unchanged, with blackening of the solid part when H[2]S is positive. The slant tends to alkalinity (greenish of bluish). Gas always absent. Indol negative. Motility positive or negative. Shigella: Color of the medium unchanged at the beginning of incubation period, but acquiring a red color when the strain is late lactose/sucrose positive. Slant tending to alkalinity (greenish or purplish). Indol positive or negative. Motility, gas and H[2]S always negative. Proteus: Color of the medium generally changes entirely to blue or sometimes to green (urease positive delayed), with blackening of solid part when H[2]S is positive. Motility positive of negative. Indol positive. Gas positive or negative. The strains which attack rapidly sucrose may give a yellow-greenish color to the medium. Sometimes the intense blue color of the medium renders difficult the reading of the H[2]S production. Escherichiae and Klebsiellae: Color of the medium red or yellow (acid) with great and rapid production of gas. Motility positive or negative. Indol generally impossible to observe. Paracoli: Those lactose of sucrose positive give the same reaction as Esherichia. Those lactose or sucrose negatives give the same reactions as Salmonellae. Sometimes indol positive and H[2]S negative. Pseudomonas: Color of the medium unchanged. The slant tends to alkalinity. It is impossible to observe motility because there is no growth in the bottom. Alkaligenes: Color of the medium unchanged. The slant tends to alkalinity. The medium does not alter the antigenic properties of the strains and with the mass of organisms on the slant we can make the serologic diagnosis. It is admitted that this medium is somewhat more laborious to prepare than others used for similar purposes. Nevertheless it can give informations generally obtained by two or three other media. Its use represents much saving in time, labor and material, and we suggest it for routine laboratory work in which a quick presumptive preliminary grouping of enteric organisms is needed.
Resumo:
A detailed study of Seabra's lipasic reagent for the diagnostic of tuberculosis has been made. Substrate. The oily emulsion of cotton seed oil containing gum as dispersing agent, presented a pH variation to the ampoulles examined. In these belonging to the same cartoon as well as in those from different cartoons the values obtained electrometrically ranged from pH 5.8-6.4 (Table I). These variations lead us to presuppose: 1) instability of the oily emulsion in gum; 2) spontaneous hydrolysis of the oil; 3) different batches or technique of the oil extraction, or different sources. Buffer: The same variability observed with substrate was found for the buffer. In CHERRY & CRANDALL's method the buffer is pH 7.0. The saline solution from Seabra's oscillated from pH6.25-6.9 (table II). Titration - end point. A colorimetric comparison between the sample and the blank as suggested by Seabra becomes very difficult. The end point in the presence of serum, when phenolphtalein is used as indicator, is very difficult to compare with the blank containing water. Conclusion. The differences observed in the results when the same serum was used, must be due to the variations observed with Seabra's reagents.
Resumo:
The aim of this study was to compare the efficacy of conservation by freezing the strains of Haemophilus influenzae at -20ºC and -70ºC. Skim milk supplemented with glucose, yeast extract and glycerol allowed highest viability of H. influenzae both at -20ºC and -70ºC from the media analyzed. Trypticase soy broth and brain heart infusion broth supplemented with glycerol, allowed excellent recovery. Use of cotton swaps as supporting material, with or without addition of cryoprotective agents, did not modify H. influenzae viability after six months of storage. Concentration of the initial inoculum positively affected viability when stored at -20ºC. Initial concentration did not influence survival after storage at -70ºC. Thawing at room temperature should not exceed 3 h as to get highest survival percentage.
Resumo:
The aim of this study was to obtain experimental evidence that phlebotomine saliva is actually ingested during the carbohydrate ingestion phase (before and after blood digestion). The ingestion of carbohydrate was simulated as it occurs in the field by offering the insects balls of cotton soaked in sucrose, sucrose crystals or orange juice cells. The results obtained here showed that ingestion occurred under each condition investigated, as indicated by the presence of apyrase, an enzyme used as a marker to detect saliva in the insect gut and/or carbohydrate sources. Saliva ingestion by phlebotomine during the carbohydrate ingestion phase is important to explain how it could promote starch digestion and to trigger Leishmania promastigotes to follow a differentiation pathway as proposed previously by some authors.
Resumo:
The present study evaluated the anti-inflammatory and analgesic properties of Agave sisalana Perrine in classic models of inflammation and pain. The hexanic fraction of A. sisalana (HFAS) was obtained by acid hydrolysis followed by hexanic reflux. Anti-inflammatory properties were examined in three acute mouse models (xylene ear oedema, hind paw oedema and pleurisy) and a chronic mouse model (granuloma cotton pellet). The antinociceptive potential was evaluated in chemical (acetic-acid) and thermal (tail-flick and hot-plate test) models of pain. When given orally, HFAS (5, 10, 25 and 50 mg/kg) reduced ear oedema (p < 0.0001; 52%, 71%, 62% and 42%, respectively). HFAS also reduced hind paw oedema at doses of 10 mg/kg and 25 mg/kg (p < 0.05; 42% and 58%, respectively) and pleurisy at doses of 10 mg/kg and 25 mg/kg (41% and 50%, respectively). In a chronic model, HFAS reduced inflammation by 46% and 58% at doses of 10 mg/kg and 25 mg/kg, respectively. Moreover, this fraction showed analgesic properties against the abdominal writhing in an acetic acid model (at doses of 5-25 mg/kg) with inhibitory rates of 24%, 54% and 48%. The HFAS also showed an increased latency time in the hot-plate (23% and 28%) and tail-flick tests (61% and 66%) for the 25 mg/kg and 50 mg/kg doses, respectively. These results suggest that HFAS has anti-inflammatory and analgesic properties.