163 resultados para Coeficiente troca gasosa
Resumo:
This work reports the development of GDE for electrogeneration of H2O2 and their application in the degradation process of Reactive Blue 19 dye. GDE produced by carbon black with 20% polytetrafluoroethylene generated up to 500 mg L-1 of H2O2 through the electrolysis of acidic medium at -0.8 V vs Ag/AgCl. Reactive Blue 19 dye was degraded most efficiently with H2O2 electrogenerated in the presence of Fe(II) ions, leading to removal of 95% of the original color and 39% of TOC at -0.8 V vs Ag/AgCl.
Resumo:
Methanolic transesterification of oils and fats was carried out in a two steps procedure, under basic and acidic catalysis. Palm, soybean, canola, corn, rice, grapeseed, sunflower, peanut, pequi and olive oils, besides tallow and lard were used as feedstock. Specific gravity, relative viscosity, thin layer chromatography and gas chromatography were used to characterize the biodiesel. Biodiesel was obtained in high yield and purity. Results were used to discuss the following key-concepts: 1 - triglycerides, composition and properties; 2 - nucleophilic acyl substitution under basic and acid conditions, 3 - thin layer chromatography, 4 - gas chromatography and its quantitative methods.
Resumo:
The efficiency of XAD®-2 resin in sampling the pesticides α and β-endosulfan from air contaminated in the laboratory was evaluated. Sampling efficiency ranged from 87 to 108% for α-endosulfan and from 71 to 84% for β-endosulfan with relative standard deviation lower than 19%. The pesticides were not detected in the second section of the cartridge showing the good retention capacity of XAD®-2 for these analytes. Method quantification limits were 0.32 and 0.34 µg m-3 for α and β-endosulfan, respectively. These results suggest that the proposed method may be useful for evaluating occupational exposure to these compounds.
Resumo:
The aim of this study was to investigate the sorption and desorption of thiamethoxam in contrasting soils under the effect of organic acids. The results showed that MTo sorption had higher Kd. The presence of organic acids increased sorption and reduced desorption of thiamethoxam at MTo. The opposite was observed for the LVdf where the presence of 400 µmol L-1 of acid reduced the sorption of thiamethoxam in a concentration of 20 µmol L-1, not influencing desorption. The dynamics of organic acids with minerals from the soil particles were clarified by infrared analysis.
Resumo:
This work reports a practical case based on the use of microwave-assisted derivatization and GC-MS for the analysis of glucose. Using two different methods for derivatization, one reference compound and the calculated dipole moment, all the isomers of glucose were identified. Identification was corroborated for the assignment of structures using the mass spectra. With this work, students are expected to associate different types of information to solve the complex problem of the analysis of glucose.
Resumo:
A new method using the headspace solid phase microextraction (HS-SPME) technique was used to evaluate the infinite dilute activity coefficient (γ1∞) in an alcohol/water/salt system. The studied systems were ethanol and water with NaCl and NH4Cl at salt concentrations of 5, 10, 15, and 30% m/v and temperatures of 303.15 and 313.15 K. The method was used to investigate the salt effect on vapor/liquid equilibrium in an ethanol/water system, yielding satisfactory results. The study focused on the rich side in ethanol. The data were compared with the literature infinite dilution data determined by other methods such as differential ebulliometry (EBUL), differential static cell equilibrium (STAT), and gas-liquid chromatography with no gas phase correction (GC). In this study, NaCl showed better separation rates than NH4Cl.
Resumo:
This work addresses the use of chiral gas chromatography in resolving optically active stereoisomers and racemates found in fruit flavours. It presents the types of chiral selectors applied to terpene-derived metal coordination compounds, polysiloxane-linked α-amino acid and mixed chiral stationary phases, and focuses on derivatized cyclodextrins, the most popular chiral stationary phases presently used in chromatographic analysis. Knowledge about the techniques involved in chiral recognition and enantiomer identification in the fruit flavour field is given along with examples from the latest studies.
Resumo:
A complete analysis of oils and their fractions allows correlations to be defined between their composition and derivatives or related geological materials. This work focused on optimization and implementation of a method for separation and quantification of n-alkanes in Brazilian oil samples by urea adduction and GC-FID techniques. Ten samples with different ºAPI were analyzed in triplicate to quantify individual n-alkanes and cyclic/branched alkane fraction. For individual quantification of n-alkanes, internal standardization with deuterated n-tetracosane was used. The use of urea adduction for the separation and quantification of n-alkanes was highly effective, with recovery values of above 80%.
Resumo:
In this study, the percentage content of free steroid in oils, fats and biodiesel was analyzed. For this, the saponification reaction on a microscale was used, and this procedure for extraction of unsaponifiable fraction was studied in several experimental steps. After the process of saponification, the unsaponifiable fraction was analyzed by gas chromatography with flame ionization detector, where all steroids present in each oil, fat and biodiesel were identified and their contents determined and compared to their respective biodiesel. A reduction in unsaponifiable fraction of each oil and fat and its biodiesel was noted, as well as a reduction in the content of free steroids. The results showed that, compared to the sedimentation problem of steroids in biodiesel, some raw materials, such as chicken fat and babassu oil may be promising because they have low content and high reduction percentages of steroids when converted to biodiesel.
Resumo:
Since their original discovery in 1914, ionic liquids (IL) have been widely examined and explored in chemistry due to their unique physical and chemical properties. Ionic liquids are collectively known as organic salts and have melting points of 100 °C or under. The molten salts most employed in analytical chemistry, including gas chromatography (GC), consist of an organic cation paired with an organic or inorganic anion. This class of materials exhibits negligible vapor pressure and may have their properties (e.g.thermal stability and selectivity) structurally tuned by imparting different moieties to the cation/anion. Currently, there are an estimated 1018possible combinations of IL. In this context, the prospection of highly selective IL-based stationary phases for gas-liquid chromatography has enabled high peak capacity and efficient separations of many critical pairs in complex samples. In this review, we present and discuss fundamental characteristics of ionic liquids and introduce important solvation models for gas-liquid systems. In addition, recent advances and applications of IL in conventional and multidimensional gas chromatography are outlined.
Resumo:
Foi investigada a remoção dos íons Al3+, Mn2+, Cu2+, Zn2+, Cd2+ and Pb2 +, em solução aquosa, por apatitas sintéticas usando o método de coluna. Sob as mesmas condições, hidroxiapatitas foram mais seletivas para a remoção de cátions que carboapatitas. Usando hidroxiapatita, a capacidades de troca aumentaram na seguinte ordem: Mn2+ < Zn2+ < Cu2+ < Cd2+ < Al3+ < Pb2+. A seqüência acima é similar a obtida em trabalhos prévios, usando o método de batelada. Análises de DRX e IV indicaram a formação de uma fase única atribuída a uma Pb-apatita.
Resumo:
Argilas pilarizadas formadas pela intercalação de óxidos de metais de transição, capazes de prevenir o colapso da estrutura, constituem materiais micro- e mesoporosos com diferentes atividades catalíticas e estabilidades. Argilas pilarizadas com cromo e com ferro foram utilizadas como catalisadores em reações de oxidação do cicloexano em fase gasosa. Os resultados indicam que os catalisadores são ativos e seletivos na produção de cicloexanona e cicloexanol. Entretanto, especial atenção deve ser dada à acidez superficial dos sólidos, responsável pela formação de cicloexeno no meio reacional, com conseqüente redução dos produtos de interesse.
Resumo:
Um método simples e eficiente para determinação simultânea de quatro ácidos carboxílicos de cadeia curta (acético, propiônico, butírico e valérico) em resíduos sólidos urbanos (RSU) é descrito no presente trabalho. Estes ácidos são considerados fitotóxicos na literatura e a variabilidade das suas concentrações durante o processo pode ser usada como parâmetro da maturação do composto de resíduos sólidos urbanos (RSU). A determinação dos ácidos carboxílicos presentes no composto de RSU envolve uma extração em água e filtração em membranas de polifluoreto de vinilideno (PVDF), seguida da injeção direta em um cromatográfo a gás com detector por ionização em chama (CG-DIC). Foram analisados três tipos de leira. Boas linearidades e coeficientes de correlação foram obtidas para todos os ácidos, e os limites de detecção e quantificação foram baixos, resultando em um método sensível para monitoramento desses ácidos em composto de RSU.
Resumo:
Um método envolvendo a pré-concentração e redissolução anódica em condições de voltametria de pulso diferencial empregando um eletrodo de pasta de carbono modificado (EPCM) com uma resina de troca iônica Amberlite IR120 foi proposto para a determinação de íons chumbo em álcool combustível. O procedimento é baseado em um pico de oxidação do analito observado em -0,53 V(vs. Ag/AgCl) em solução de HCl. As melhores condições experimentais encontradas foram: 5% (m/m) da Amberlite IR120 para a construção do eletrodo, solução de HCl 0,1 mol L-1, velocidade de varredura de 10 mVs-1, tempo de pré-concentração de 15 min e amplitude de pulso de 100 mV. Utilizando essas condições, o EPCM apresentou uma resposta linear entre a corrente de pico anódica e a concentração de íons chumbo para o intervalo entre 9,9 x 10-9 e 1,2 x 10-6 mol L-1 e um limite de detecção de 7,2 x 10-9 mol L-1. Valores de recuperação entre 96 % e 102 % foram encontrados para amostras de álcool combustível enriquecidas com Pb2+ em níveis de 10-7 mol L-1. O efeito da presença de outros íons concomitantes sobre a resposta voltamétrica do eletrodo também foi avaliado.