147 resultados para CELL-DISEASE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to characterize the interactions of antagonist G (H-Arg-D-Trp-NmePhe-D-Trp-Leu-Met-NH 2)-targeted sterically stabilized liposomes with the human variant small cell lung cancer (SCLC) H82 cell line and to evaluate the antiproliferative activity of encapsulated doxorubicin against this cell line. Variant SCLC tumors are known to be more resistant to chemotherapy than classic SCLC tumors. The cellular association of antagonist G-targeted (radiolabeled) liposomes was 20-30-fold higher than that of non-targeted liposomes. Our data suggest that a maximum of 12,000 antagonist G-targeted liposomes were internalized/cell during 1-h incubation at 37ºC. Confocal microscopy experiments using pyranine-containing liposomes further confirmed that receptor-mediated endocytosis occurred, specifically in the case of targeted liposomes. In any of the previously mentioned experiments, the binding and endocytosis of non-targeted liposomes have revealed to be negligible. The improved cellular association of antagonist G-targeted liposomes, relative to non-targeted liposomes, resulted in an enhanced nuclear delivery (evaluated by fluorimetry) and cytotoxicity of encapsulated doxorubicin for incubation periods as short as 2 h. For an incubation of 2 h, we report IC50 values for targeted and non-targeted liposomes containing doxorubicin of 5.7 ± 3.7 and higher than 200 µM doxorubicin, respectively. Based on the present data, we may infer that receptors for antagonist G were present in H82 tumor cells and could mediate the internalization of antagonist G-targeted liposomes and the intracellular delivery of their content. Antagonist G covalently coupled to liposomal drugs may be promising for the treatment of this aggressive and highly heterogeneous disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diseases such as hypertension, atherosclerosis, hyperlipidemia, and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC) growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many factors influence cellular changes, of which angiotensin II (Ang II) appears to be amongst the most important. The physiological and pathophysiological actions of Ang II are mediated primarily via the Ang II type 1 receptor. Growing evidence indicates that Ang II induces its pleiotropic vascular effects through NADPH-driven generation of reactive oxygen species (ROS). ROS function as important intracellular and intercellular second messengers to modulate many downstream signaling molecules, such as protein tyrosine phosphatases, protein tyrosine kinases, transcription factors, mitogen-activated protein kinases, and ion channels. Induction of these signaling cascades leads to VSMC growth and migration, regulation of endothelial function, expression of pro-inflammatory mediators, and modification of extracellular matrix. In addition, ROS increase intracellular free Ca2+ concentration ([Ca2+]i), a major determinant of vascular reactivity. ROS influence signaling molecules by altering the intracellular redox state and by oxidative modification of proteins. In physiological conditions, these events play an important role in maintaining vascular function and integrity. Under pathological conditions ROS contribute to vascular dysfunction and remodeling through oxidative damage. The present review focuses on the biology of ROS in Ang II signaling in vascular cells and discusses how oxidative stress contributes to vascular damage in cardiovascular disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone marrow stromal cells are critical regulators of hematopoiesis. Osteoblasts are part of the stromal cell support system in bone marrow and may be derived from a common precursor. Several studies suggested that osteoblasts regulate hematopoiesis, yet the entire mechanism is not understood. It is clear, however, that both hematopoietic precursors and osteoblasts interact for the production of osteoclasts and the activation of resorption. We observed that hematopoietic stem cells (HSCs) regulate osteoblastic secretion of various growth factors, and that osteoblasts express some soluble factors exclusively in the presence of HSCs. Osteoblasts and hematopoietic cells are closely associated with each other in the bone marrow, suggesting a reciprocal relationship between them to develop the HSC niche. One critical component regulating the niche is stromal-derived factor-1 (SDF-1) and its receptor CXCR4 which regulates stem cell homing and, as we have recently demonstrated, plays a crucial role in facilitating those tumors which metastasize to bone. Osteoblasts produce abundant amounts of SDF-1 and therefore osteoblasts play an important role in metastasis. These findings are discussed in the context of the role of osteoblasts in marrow function in health and disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We transplanted 47 patients with Fanconi anemia using an alternative source of hematopoietic cells. The patients were assigned to the following groups: group 1, unrelated bone marrow (N = 15); group 2, unrelated cord blood (N = 17), and group 3, related non-sibling bone marrow (N = 15). Twenty-four patients (51%) had complete engraftment, which was not influenced by gender (P = 0.87), age (P = 0.45), dose of cyclophosphamide (P = 0.80), nucleated cell dose infused (P = 0.60), or use of anti-T serotherapy (P = 0.20). Favorable factors for superior engraftment were full HLA compatibility (independent of the source of cells; P = 0.007) and use of a fludarabine-based conditioning regimen (P = 0.046). Unfavorable factors were > or = 25 transfusions pre-transplant (P = 0.011) and degree of HLA disparity (P = 0.007). Intensity of mucositis (P = 0.50) and use of androgen prior to transplant had no influence on survival (P = 0.80). Acute graft-versus-host disease (GVHD) grade II-IV and chronic GVHD were diagnosed in 47 and 23% of available patients, respectively, and infections prevailed as the main cause of death, associated or not with GVHD. Eighteen patients are alive, the Kaplan-Meyer overall survival is 38% at ~8 years, and the best results were obtained with related non-sibling bone marrow patients. Three recommendations emerged from the present study: fludarabine as part of conditioning, transplant in patients with <25 transfusions and avoidance of HLA disparity. In addition, an extended family search (even when consanguinity is not present) seeking for a related non-sibling donor is highly recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with diffuse large B-cell lymphoma treated in a University Hospital were studied from 1990 to 2001. Two treatment regimens were used: ProMACE-CytaBOM and then, from November 1996 on, the CHOP regimen. Complete remission (CR), disease-free survival (DFS), and overall survival (OS) rates were determined. Primary refractory patients and relapsed patients were also assessed. A total of 111 patients under 60 years of age were assessed and ranked according to the international prognostic index adjusted to age. Twenty (18%) of them were classified as low risk, 40 (36%) as intermediate risk, 33 (29.7%) as high intermediate risk, and 18 (16.3%) as high risk. Over a five-year period, OS and DFS rates were 71 and 59%, respectively, for all patients. For the same time period, OS and DFS rates were 72.8 and 61.3%, respectively, for 77 patients treated with CHOP chemotherapy and 71.3 and 60% for patients treated with the ProMACE-CytaBOM protocol. There was no significant difference in OS or DFS between the two groups. Eleven of 50 refractory and relapsed patients were consolidated with high doses of chemotherapy. Three received allogenic and 8 autologous bone marrow transplantation. For the latter, CR was 62.5% and mean OS was 41.1 months. The clinical behavior, CR, DFS, and OS of the present patients were similar to those reported in the literature. We conclude that both the CHOP and ProMACE-CytaBOM protocols can be used to treat diffuse large B-cell lymphoma patients, although the CHOP protocol is preferable because of its lower cost and lower toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autosomal recessive polycystic kidney disease (ARPKD) is an inherited disease characterized by a malformation complex which includes cystically dilated tubules in the kidneys and ductal plate malformation in the liver. The disorder is observed primarily in infancy and childhood, being responsible for significant pediatric morbidity and mortality. All typical forms of ARPKD are caused by mutations in a single gene, PKHD1 (polycystic kidney and hepatic disease 1). This gene has a minimum of 86 exons, assembled into multiple differentially spliced transcripts and has its highest level of expression in kidney, pancreas and liver. Mutational analyses revealed that all patients with both mutations associated with truncation of the longest open reading frame-encoded protein displayed the severe phenotype. This product, polyductin, is a 4,074-amino acid protein expressed in the cytoplasm, plasma membrane and primary apical cilia, a structure that has been implicated in the pathogenesis of different polycystic kidney diseases. In fact, cholangiocytes isolated from an ARPKD rat model develop shorter and dysmorphic cilia, suggesting polyductin to be important for normal ciliary morphology. Polyductin seems also to participate in tubule morphogenesis and cell mitotic orientation along the tubular axis. The recent advances in the understanding of in vitro and animal models of polycystic kidney diseases have shed light on the molecular and cellular mechanisms of cyst formation and progression, allowing the initiation of therapeutic strategy designing and promising perspectives for ARPKD patients. It is notable that vasopressin V2 receptor antagonists can inhibit/halt the renal cystic disease progression in an orthologous rat model of human ARPKD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transitional cell carcinoma (TCC) of the urothelium is often multifocal and subsequent tumors may occur anywhere in the urinary tract after the treatment of a primary carcinoma. Patients initially presenting a bladder cancer are at significant risk of developing metachronous tumors in the upper urinary tract (UUT). We evaluated the prognostic factors of primary invasive bladder cancer that may predict a metachronous UUT TCC after radical cystectomy. The records of 476 patients who underwent radical cystectomy for primary invasive bladder TCC from 1989 to 2001 were reviewed retrospectively. The prognostic factors of UUT TCC were determined by multivariate analysis using the COX proportional hazards regression model. Kaplan-Meier analysis was also used to assess the variable incidence of UUT TCC according to different risk factors. Twenty-two patients (4.6%). developed metachronous UUT TCC. Multiplicity, prostatic urethral involvement by the bladder cancer and the associated carcinoma in situ (CIS) were significant and independent factors affecting the occurrence of metachronous UUT TCC (P = 0.0425, 0.0082, and 0.0006, respectively). These results were supported, to some extent, by analysis of the UUT TCC disease-free rate by the Kaplan-Meier method, whereby patients with prostatic urethral involvement or with associated CIS demonstrated a significantly lower metachronous UUT TCC disease-free rate than patients without prostatic urethral involvement or without associated CIS (log-rank test, P = 0.0116 and 0.0075, respectively). Multiple tumors, prostatic urethral involvement and associated CIS were risk factors for metachronous UUT TCC, a conclusion that may be useful for designing follow-up strategies for primary invasive bladder cancer after radical cystectomy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allogeneic stem cell transplantation has been increasingly performed for a variety of hematologic diseases. Clinically significant acute graft-versus-host disease (GVHD) occurs in 9 to 50% of patients who receive allogeneic grafts, resulting in high morbidity and mortality. There is no standard therapy for patients with acute GVHD who do not respond to steroids. Studies have shown a possible benefit of anti-TNF-a (infliximab)for the treatment of acute GVHD. We report here on the outcomes of 10 recipients of related or unrelated stem cell transplants who received 10 mg/kg infliximab, iv, once weekly for a median of 3.5 doses (range: 1-6) for the treatment of severe acute GVHD and who were not responsive to standard therapy. All patients had acute GVHD grades II to IV (II = 2, III = 3, IV = 5). Overall, 9 patients responded and 1 patient had progressive disease. Among the responders, 3 had complete responses and 6 partial responses. All patients with cutaneous or gastrointestinal involvement responded, while only 2 of 6 patients with liver disease showed any response. None of the 10 patients had any kind of immediate toxicity. Four patients died, all of them with sepsis. Six patients are still alive after a median follow-up time of 544 days (92-600) after transplantation. Considering the severity of the cases and the bad prognosis associated with advanced acute GVHD, we find our results encouraging. Anti-TNF-a seems to be a useful agent for the treatment of acute GVHD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TP53, a tumor suppressor gene, has a critical role in cell cycle, apoptosis and cell senescence and participates in many crucial physiological and pathological processes. Identification of TP53 polymorphism in older people and age-related diseases may provide an understanding of its physiology and pathophysiological role as well as risk factors for complex diseases. TP53 codon 72 (TP53:72) polymorphism was investigated in 383 individuals aged 66 to 97 years in a cohort from a Brazilian Elderly Longitudinal Study. We investigated allele frequency, genotype distribution and allele association with morbidities such as cardiovascular disease, type II diabetes, obesity, neoplasia, low cognitive level (dementia), and depression. We also determined the association of this polymorphism with serum lipid fractions and urea, creatinine, albumin, fasting glucose, and glycated hemoglobin levels. DNA was isolated from blood cells, amplified by PCR using sense 5'-TTGCCGTCCCAAGCAATGGATGA-3' and antisense 5'-TCTGGGAAGGGACAGAAGATGAC-3' primers and digested with the BstUI enzyme. This polymorphism is within exon 4 at nucleotide residue 347. Descriptive statistics, logistic regression analysis and Student t-test using the multiple comparison test were used. Allele frequencies, R (Arg) = 0.69 and P (Pro) = 0.31, were similar to other populations. Genotype distributions were within Hardy-Weinberg equilibrium. This polymorphism did not show significant association with any age-related disease or serum variables. However, R allele carriers showed lower HDL levels and a higher frequency of cardiovascular disease than P allele subjects. These findings may help to elucidate the physiopathological role of TP53:72 polymorphism in Brazilian elderly people.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human cytomegalovirus (CMV) infection is common in most people but nearly asymptomatic in immunocompetent individuals. After primary infection the virus persists throughout life in a latent form in a variety of tissues, particularly in precursor cells of the monocytic lineage. CMV reinfection and occurrence of disease are associated with immunosuppressive conditions. Solid organ and bone marrow transplant patients are at high risk for CMV disease as they undergo immunosuppression. Antiviral treatment is effective in controlling viremia, but 10-15% of infected patients can experience CMV disease by the time the drug is withdrawn. In addition, long-term antiviral treatment leads to bone marrow ablation and renal toxicity. Furthermore, control of chronic CMV infection in transplant recipients appears to be dependent on the proper recovery of cellular immunity. Recent advances in the characterization of T-cell functions and identification of distinct functional signatures of T-cell viral responses have opened new perspectives for monitoring transplant individuals at risk of developing CMV disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous disease with respect to phenotype, gene expression profile and activation of particular intracellular signaling pathways. Despite very significant improvements, current therapeutic regimens still fail to cure a portion of the patients and frequently implicate the use of aggressive protocols with long-term side effects. In this review, we focused on how deregulation of critical signaling pathways, in particular Notch, PI3K/Akt, MAPK, Jak/STAT and TGF-ß, may contribute to T-ALL. Identifying the alterations that affect intracellular pathways that regulate cell cycle and apoptosis is essential to understanding the biology of this malignancy, to define more effective markers for the correct stratification of patients into appropriate therapeutic regimens and to identify novel targets for the development of specific, less detrimental therapies for T-ALL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C57BL/6 mice develop signs and symptoms comparable, in part, to the human metabolic syndrome. The objective of the present study was to evaluate the effects of exercise training on carbohydrate metabolism, lipid profile, visceral adiposity, pancreatic islet alterations, and nonalcoholic fatty liver disease in C57BL/6 mice. Animals were fed one of two diets during an 8-week period: standard (SC, N = 12) or very high-fat (HF, N = 24) chow. An exercise training protocol (treadmill) was then established and mice were divided into SC and HF sedentary (SC-Sed, HF-Sed), exercised groups (SC-Ex, HF-Ex), or switched from HF to SC (HF/SC-Sed and HF/SC-Ex). HF/HF-Sed mice had the greatest body mass (65% more than SC/SC-Sed; P < 0.0001), and exercise reduced it by 23% (P < 0.0001). Hepatic enzymes ALP (+80%), ALT (+100%) and AST (+70%) were higher in HF/HF mice than in matched SC/SC. Plasma insulin was higher in both the HF/HF-Sed and HF/SC-Sed groups than in the matched exercised groups (+85%; P < 0.001). Pancreatic islets, adipocytes and liver structure were greatly affected by HF, ultimately resulting in islet β-cell hypertrophy and severe liver steatosis. The HF group had larger islets than the SC/SC group (+220%; P < 0.0001), and exercise significantly reduced liver steatosis and islet size in HF. Exercise attenuated all the changes due to HF, and the effects were more pronounced in exercised mice switched from an HF to an SC diet. Exercise improved the lipid profile by reducing body weight gain, visceral adiposity, insulin resistance, islet alterations, and fatty liver, contributing to obesity and steatohepatitis control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small cell lung cancer (SCLC) is an aggressive disease, representing 15% of all cases of lung cancer, has high metastatic potential and low prognosis that urgently demands the development of novel therapeutic approaches. One of the proposed approaches has been the down-regulation of BCL2, with poorly clarified and controversial therapeutic value regarding SCLC. The use of anti-BCL2 small interfering RNA (siRNA) in SCLC has never been reported. The aim of the present study was to select and test the in vitro efficacy of anti-BCL2 siRNA sequences against the protein and mRNA levels of SCLC cells, and their effects on cytotoxicity and chemosensitization. Two anti-BCL2 siRNAs and the anti-BCL2 G3139 oligodeoxynucleotide (ODN) were evaluated in SCLC cells by the simultaneous determination of Bcl-2 and viability using a flow cytometry method recently developed by us in addition to Western blot, real-time reverse-transcription PCR, and cell growth after single and combined treatment with cisplatin. In contrast to previous reports about the use of ODN, a heterogeneous and up to 80% sequence-specific Bcl-2 protein knockdown was observed in the SW2, H2171 and H69 SCLC cell lines, although without significant sequence-specific reduction of cell viability, cell growth, or sensitization to cisplatin. Our results question previous data generated with antisense ODN and supporting the present concept of the therapeutic interest in BCL2 silencing per se in SCLC, and support the growing notion of the necessity of a multitargeting molecular approach for the treatment of cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dilated cardiomyopathy can be the end-stage form and common denominator of several cardiac disorders of known cause, such as hypertensive, ischemic, diabetic and Chagasic diseases. However, some individuals have clinical findings, such as an increase in ventricular chamber size and impaired contractility (classical manifestations of dilated cardiomyopathy) even in the absence of a diagnosed primary disease. In these patients, dilated cardiomyopathy is classified as idiopathic since its etiology is obscure. Nevertheless, regardless of all of the advances in medical, pharmacological and surgical procedures, the fate of patients with dilated cardiomyopathy (of idiopathic or of any other known cause) is linked to arrhythmic episodes, severe congestive heart failure and an increased risk of sudden cardiac death. In this review, we will summarize present data on the use of cell therapies in animal models of dilated cardiomyopathies and will discuss the few clinical trials that have been published so far involving patients affected by this disease. The animal models discussed here include those in which the cardiomyopathy is produced by genetic manipulation and those in which disease is induced by chemical or infectious agents. The specific model used clearly creates restrictions to translation of the proposed cell therapy to clinical practice, insofar as most of the clinical trials performed to date with cell therapy have used autologous cells. Thus, translation of genetic models of dilated cardiomyopathy may have to wait until the use of allogeneic cells becomes more widespread in clinical trials of cell therapies for cardiac diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human life-threatening monogenic disorders. The disease is characterized by bilateral, progressive renal cystogenesis and cyst and kidney enlargement, often leading to end-stage renal disease, and may include extrarenal manifestations. ADPKD is caused by mutation in one of two genes, PKD1 and PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC2 is a non-selective cation channel permeable to Ca2+, while PC1 is thought to function as a membrane receptor. The cyst cell phenotype includes increased proliferation and apoptosis, dedifferentiation, defective planar polarity, and a secretory pattern associated with extracellular matrix remodeling. The two-hit model for cyst formation has been recently extended by the demonstration that early gene inactivation leads to rapid and diffuse development of renal cysts, while inactivation in adult life is followed by focal and late cyst formation. Renal ischemia/reperfusion, however, can function as a third hit, triggering rapid cyst development in kidneys with Pkd1 inactivation induced in adult life. The PC1-PC2 complex behaves as a sensor in the primary cilium, mediating signal transduction via Ca2+ signaling. The intracellular Ca2+ homeostasis is impaired in ADPKD, being apparently responsible for the cAMP accumulation and abnormal cell proliferative response to cAMP. Activated mammalian target for rapamycin (mTOR) and cell cycle dysregulation are also significant features of PKD. Based on the identification of pathways altered in PKD, a large number of preclinical studies have been performed and are underway, providing a basis for clinical trials in ADPKD and helping the design of future trials.