126 resultados para Bull’s tail
Resumo:
To explore whether an environment of weightlessness will cause damage to the reproductive system of animals, we used the tail-suspension model to simulate microgravity, and investigated the effect of microgravity on the tissue structure and function of the testis in sexually mature male rats. Forty-eight male Wistar rats weighing 200-250 g were randomly assigned to three groups (N = 16 each): control, tail traction, and tail suspension. After the rats were suspended for 7 or 14 days, morphological changes of testis were evaluated by histological and electron microscopic methods. The expression of HSP70, bax/bcl-2 and AR (androgen receptor) in testis was measured by immunohistochemistry. Obvious pathological lesions were present in the testis after the rats were suspended for 7 or 14 days. We detected overexpression of HSP70 and an increase of apoptotic cells, which may have contributed to the injury to the testis. The expression of AR, as an effector molecule in the testis, was significantly decreased in the suspended groups compared to control (P < 0.01). We also observed that, with a longer time of suspension, the aforementioned pathological damage became more serious and some pathological injury to the testis was irreversible. The results demonstrated that a short- or medium-term microgravity environment could lead to severe irreversible damage to the structure of rat testis.
Resumo:
Animal models of intervertebral disc degeneration play an important role in clarifying the physiopathological mechanisms and testing novel therapeutic strategies. The objective of the present study is to describe a simple animal model of disc degeneration involving Wistar rats to be used for research studies. Disc degeneration was confirmed and classified by radiography, magnetic resonance and histological evaluation. Adult male Wistar rats were anesthetized and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7 and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s. To grade the severity of intervertebral disc degeneration, we measured the intervertebral disc height from radiographic images 7 and 30 days after the injury, and the signal intensity T2-weighted magnetic resonance imaging. Histological analysis was performed with hematoxylin-eosin and collagen fiber orientation using picrosirius red staining and polarized light microscopy. Imaging and histological score analyses revealed significant disc degeneration both 7 and 30 days after the lesion, without deaths or systemic complications. Interobserver histological evaluation showed significant agreement. There was a significant positive correlation between histological score and intervertebral disc height 7 and 30 days after the lesion. We conclude that the tail disc puncture method using Wistar rats is a simple, cost-effective and reproducible model for inducing disc degeneration.
Resumo:
Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress.
Resumo:
High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension.
Resumo:
Osteoporosis has become a serious global public health issue. Hence, osteoporotic fracture healing has been investigated in several previous studies because there is still controversy over the effect osteoporosis has on the healing process. The current study aimed to analyze two different periods of bone healing in normal and osteopenic rats. Sixty, 7-week-old female Wistar rats were randomly divided into four groups: unrestricted and immobilized for 2 weeks after osteotomy (OU2), suspended and immobilized for 2 weeks after osteotomy (OS2), unrestricted and immobilized for 6 weeks after osteotomy (OU6), and suspended and immobilized for 6 weeks after osteotomy (OS6). Osteotomy was performed in the middle third of the right tibia 21 days after tail suspension, when the osteopenic condition was already set. The fractured limb was then immobilized by orthosis. Tibias were collected 2 and 6 weeks after osteotomy, and were analyzed by bone densitometry, mechanical testing, and histomorphometry. Bone mineral density values from bony calluses were significantly lower in the 2-week post-osteotomy groups compared with the 6-week post-osteotomy groups (multivariate general linear model analysis, P<0.000). Similarly, the mechanical properties showed that animals had stronger bones 6 weeks after osteotomy compared with 2 weeks after osteotomy (multivariate general linear model analysis, P<0.000). Histomorphometry indicated gradual bone healing. Results showed that osteopenia did not influence the bone healing process, and that time was an independent determinant factor regardless of whether the fracture was osteopenic. This suggests that the body is able to compensate for the negative effects of suspension.
Resumo:
The objective of this study was to determine the chemical profile of sugarcane spirits produced by different double distillation methodologies in rectifying still. Fermented sugarcane juice was distilled in rectifying still according to three double distillation methodologies: the methodology used for cognac production; the methodology used for whisky production; and the 10-80-10 percentage composition methodology, referring to the volumes of head, heart and tail of the distillate fractions from the second distillation. For comparison purposes, a simple distilled spirit was also produced. The distillates were analyzed for concentrations of ethanol, copper, volatile acidity, furfural and hydroxymethylfurfural, aldehydes, esters, methanol and higher alcohols. The spirits were also evaluated on the sensory attributes of aroma, taste and preference. Compared to simple distillation, double distillation improved the chemical quality of the spirits, since it has reduced the concentrations of acids, aldehydes, esters, methanol, higher alcohols and, consequently, their coefficient of congeners. Regardless of the methodology employed, the double distillation improved the sensory quality of the spirits since they obtained higher sensory acceptance in relation to spirits produced by simple distillation. Among double distilled spirits, the one produced according to whisky methodology obtained the best scores from appraisers on the aroma and flavor parameters and it was also the most preferred.