176 resultados para Biodiesel etílico
Resumo:
Presently glycerol is considered a co-product of biodiesel industry. As the biodiesel production is exponentially increasing, glycerol generated from the transesterification of vegetable oils and fats is also being produced on a large scale, and turned out to be essential seeking for novel alternatives to the consumption of the extra volume, in crude and/or as derivatives high added value. This review mainly deals with chemical and enzymatic transformations of glycerol to obtain chiral building blocks for synthesis of pharmaceuticals and natural products.
Resumo:
Total spectrofluorimetry associated to Principal Components Analysis (PCA) were used to classify into different groups the samples of diesel oil, biodiesel, vegetal oil and residual oil, as well as, to identify addition of non-transesterified residual vegetable oil, instead of biodiesel, to the diesel oil. Using this method, the samples of diesel oil, mixtures of biodiesel in diesel and mixtures of residual oil in diesel were separated into well-defined groups.
Resumo:
Direct infusion electrospray ionization mass spectrometry in the negative ion mode, ESI(-)-MS and Fourier transform infrared spectroscopy (FTIR) were used together with partial least squares (PLS) as a tool to determine B3 adulteration (B3 - mixture of 3% v/v of biodiesel in diesel) with kerosene and residual oil.
Resumo:
In this work sulfated zirconia (SZr) and activated carbon/SZr composites produced by impregnation method with or without heating treatment step (CABC/SZr-I and CABC/SZr-I SC) and by the method of synthesis of SZr on the carbon (CABC/SZr-S) was used as catalysts in the esterification reactions of fatty acids. The SZr presented very active, conversions higher than 90% were obtained after 2 h of reaction. The activity of the composite CABC/SZr-I20%SC was up to 92%, however, this was directly related to time and temperature reactions. CABC/SZr-I and CABC/SZr-S were less active in esterification reactions, what could be attributed to its low acidity
Resumo:
Sodium bismuthate dihydrate and two species derived from its thermal treatment were investigated as catalysts for soybean oil methanolysis and, regardless of the type of solid used, ester yields always above 76 wt% were obtained. After a single reaction course, both liquid and solid phases were characterized using several analytical methods such as X-ray diffraction and thermogravimetric analysis. As a result, the catalytic phenomenon was shown to be solely due to the leaching of alkalinecatalytic species from the solid materials.
Resumo:
The construction and optimization of a device that can be applied to electrochemical studies in flat micro regions are described. This was developed as an attempt to study small regions of metallic samples, whose properties may differ completely from its macroscopic behavior and for studies in highly resistive medium. Some results were obtained for individual grains of polycrystalline samples, welded regions, pure copper, platinum, glassy carbon, single crystals of Cu-Zn-Al alloy, and steel in biodiesel without electrolyte intentionally added. The device showed to be useful for the proposed purpose, allowing to be automated and has potential possibilities of other applications.
Resumo:
A procedure for compositional characterization of a microalgae oil is presented and applied to investigate a microalgae based biodiesel production process through process simulation. The methodology consists of: proposing a set of triacylglycerides (TAG) present in the oil; assuming an initial TAG composition and simulating the transesterification reaction (UNISIM Design, Honeywell) to obtain FAME characterization values (methyl ester composition); evaluating deviations of experimental from calculated values; minimizing the sum of squared deviations by a non-linear optimization algorithm, with TAG molar fractions as decision variables. Biodiesel from the characterized oil is compared to a rapeseed based biodiesel.
Resumo:
ABSTRACT Montmorillonite was modified with zirconium polyoxycations in the presence of ammonium sulphate. The material was characterized and used as a catalyst in the esterification of lauric acid, the reactions being accompanied by 2³ factorial design. Conversions of up to 95.33 and 83.35% were observed for the methyl and ethyl esterification reactions respectively, proving superior to results obtained by thermal conversion. The material was submitted to three reaction cycles and similar conversions were observed, indicating the catalyst is not significantly deactivated after reuse. The catalyst was also tested under reflux conditions, yielding a maximum conversion of 36.86%.
Resumo:
This work shows the results of a Proficiency Testing performed by a partnership between INMETRO and ANP. The performance of 49 Brazilian laboratories (using the z-score statistical test) in determining 10 quality parameters of ethanol fuel and biodiesel was evaluated. The certified reference values were provided by INMETRO, allowing a more rigorous assessment of the laboratories. For hydrous ethanol, the acidity parameter showed the lowest number of laboratories with satisfactory results (48%), while 85% of the laboratories presented satisfactory results for ethanol content. For biodiesel, the percentage of laboratories with satisfactory results ranged from 46% (kinematic viscosity) to 92% (acid number).
Resumo:
Rice husk silica (RHS) and NaY were used as supports for potassium (K) prepared from acetate buffer (B) and acetate (A) solutions. K loading did not destroy the NaY structure, but it caused a decrease in the surface area; the K species resided in micropores and on the external surface. In contrast, K loading resulted in the collapse and a decrease in the surface area of RHS. It was found that 12K/NaY-B was the most active catalyst for the transesterification of Jatropha seed oil. The minimum K content in K/NaY-B that provided complete conversion of the Jatropha seed oil was 11 wt%, and the biodiesel yield was 77.9%.
Resumo:
This contribution discusses the state of the art and the challenges in producing biofuels, as well as the need to develop chemical conversion processes of CO2 in Brazil. Biofuels are sustainable alternatives to fossil fuels for providing energy, whilst minimizing the effects of CO2 emissions into the atmosphere. Ethanol from fermentation of simple sugars and biodiesel produced from oils and fats are the first-generation of biofuels available in the country. However, they are preferentially produced from edible feedstocks (sugar cane and vegetable oils), which limits the expansion of national production. In addition, environmental issues, as well as political and societal pressures, have promoted the development of 2nd and 3rd generation biofuels. These biofuels are based on lignocellulosic biomass from agricultural waste and wood processing, and on algae, respectively. Cellulosic ethanol, from fermentation of cellulose-derived sugars, and hydrocarbons in the range of liquid fuels (gasoline, jet, and diesel fuels) produced through thermochemical conversion processes are considered biofuels of the new generation. Nevertheless, the available 2nd and 3rd generation biofuels, and those under development, have to be subsidized for inclusion in the consumer market. Therefore, one of the greatest challenges in the biofuels area is their competitive large-scale production in relation to fossil fuels. Owing to this, fossil fuels, based on petroleum, coal and natural gas, will be around for many years to come. Thus, it is necessary to utilize the inevitable CO2 released by the combustion processes in a rational and economical way. Chemical transformation processes of CO2 into methanol, hydrocarbons and organic carbonates are attractive and relatively easy to implement in the short-to-medium terms. However, the low reactivity of CO2 and the thermodynamic limitations in terms of conversion and yield of products remain challenges to be overcome in the development of sustainable CO2 conversion processes.
Resumo:
Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.
Resumo:
Brazil is renowned for its biodiversity; however, its economy is based on exotic plants, extraction and unsustainable use of natural resources. This issue was addressed in a recent QN review entitled "Chemistry without Borders." In order to explore the potential of Brazilian biodiversity fully, sustainable development is required in key technological areas, such as biotechnology. This research field is consistent with the green chemistry and white technology principles. Therefore, biotechnology is a sustainable alternative to conventional technologies and is expected to account for 20% of global chemicals by 2020. Brazil is the second largest grower of biotech crops and biodiesel, but its main activities rely on the fermentative process. In order to stimulate the national biotechnology development, the Brazilian Federal Government launched a national policy for biotechnology in 2007 and the National Committee of Biotechnology was created. Among the outstanding biotechnological processes, biocatalysis is one of the most important alternatives to conventional processing, and this field has changed dramatically with the advent of recombinant DNA technology in the 1970s, when large quantities of enzymes were accessible. The direct evolution methodology in the 1990s was a breakthrough and allowed tailoring of enzymes possessing high stability and stereoselectivity. However, about 60 years after the first industrial enzymatic biotransformation of steroids, the full potential of biocatalysis is far from being achieved. Future challenges in this field concern the multienzyme cascade reactions associated with optimized chemoenzymatic processes, and some recent industrial application of biocatalysts are also highlighted in this perspective.
Resumo:
To choose among the variety of oleaginous plants for biodiesel production, the oil content of several matrices was determined through different low-field ¹H nuclear magnetic resonance (NMR) experiments with varied pulse sequences, namely single-pulse, spin-echo, CPMG, and CWFP. The experiments that involved the first three sequences showed high correlation with each other and with the solvent extraction method. The quality of the vegetable oils was also evaluated on the basis of the existing correlation between the T2 values of the oils and their properties, such as viscosity, iodine index, and cetane index. These analyses were performed using HCA and PCA chemometric tools. The results were sufficiently significant to allow separation of the oleaginous matrices according to their quality. Thus, the low-field ¹H NMR technique was confirmed as an important tool to aid in the selection of oleaginous matrices for biodiesel production.
Resumo:
Glycerol, a co-product of biodiesel production, was used as a carbon source for the kinetics studies and production of biosurfactants by P. aeruginosa MSIC02. The highest fermentative parameters (Y PX = 3.04 g g-1; Y PS = 0.189 g g-1, P B = 31.94 mg L-1 h-1 and P X = 10.5 mg L-1 h-1) were obtained at concentrations of 0.4% (w/v) NaNO3 and 2% (w/v) glycerol. The rhamnolipid exhibited 80% of emulsification on kerosene, surface tension of 32.5 mN m-1, CMC = 28.2 mg L-1, C20 (concentration of surfactant in the bulk phase that produces a reduction of 20 dyn/cm in the surface tension of the solvent) = 0.99 mg L-1, Γm (surface concentration excess) = 2.4 x 10-26 mol Å-2 and S (surface area) = 70.4 Ų molecule-1 with solutions containing 10% NaCl. A mathematical model based on logistic equation was considered to representing the process. Model parameters were estimated by non-linear regression method. This approach was able to give a good description of the process.