191 resultados para Bean - Irrigation
Resumo:
Phytoremediation, the use of plants to decontaminate soils and water resources from organic pollutants such as herbicides, is economically and environmentally a promising technique applied in many areas, including agriculture. The objective of this work was to evaluate the development of bean plants cultivated in the field, in soil with different levels of trifloxysulfuron-sodium contamination, following cultivation of two green manure species, as well as to evaluate the possibility of recontamination of the area by such herbicide with the straw permanence on the soil. The experiment was carried out in Coimbra, MG, Brazil, on a sandy clayey Red - Yellow Argisol from March to November 2003. Four levels of soil contamination with trifloxysulfuron-sodium (0.00; 3.75; 7.50; and 15.00 g ha-1) were used as well as the following five types of cultivation prior to bean sowing in the area after herbicide application: black velvet beans (Stizolobium aterrimum) followed by removal of straw; S. aterrimum, followed by permanence of straw; jack bean (Canavalia ensiformis), followed by removal of straw; C. ensiformis followed by permanence of straw; and without prior cultivation, weed-free (weeded control). The leguminous plants were kept in the area for 65 days, cut close to the soil, and with its aerial part left or not on the surface of the experimental plot, depending on the treatment. Fifteen days after the species were cut, bean was sown in the area. At 45 days after emergence (DAE) of the bean plants, plant height and dry mass of the aerial part were evaluated. Grain productivity was determined during harvest. Height, dry matter of the aerial part and grain productivity of the bean plants, cultivated in an area previously contaminated with trifloxysulfuron-sodium at any of the levels tested, were higher with prior cultivation of S. aterrimum or C. ensiformis. At the lowest level of herbicide contamination, prior cultivation of C. ensiformis was found to be more efficient than that of S. aterrimum in mitigating the harmful effects of trifloxysulfuron-sodium on bean grain production. The permanence of the straw of the green manure species during the bean cycle did not harm the development of the plants or caused culture productivity losses, indicating that straw permanence in the area does not promote recontamination of the area.
Resumo:
Two field experiments were conducted in two successive seasons, 2005/2006 and 2006/2007, to determine whether management can improve faba bean competitiveness with weeds, thus helping to achieve its yield potential. The experiment included five treatments, composed of organic and mineral fertilizers, alone and mixed at different rates, along with a control and six weed control treatments, including oxadiargyl, prometryn, hand hoeing treatments alone or mixed with the herbicides, and a nonweeded treatment (control).The herbicide treatments were not superior to the two hand-hoeing treatments. Using compost favored growth and yield of faba bean more than of weeds. Adding fertilizer also improved most yield parameters. Application of compost alone or combined with 50 or 100% of the recommended NPK rate improved faba bean growth in terms of net assimilation rate, specific leaf area, and leaf weight ratio as components of relative growth rate. This improvement in growth resulted in increase of seed yield, yield components and protein of faba bean. Faba bean yield performance improved under interactive fertilizer effects and weed control treatments as growth improved, as a result of nutrient release from fertilizers and weed control.
Resumo:
Field trial was conducted with the aim of utilizing allelopathic crop residues to reduce the use of synthetic herbicides in broad bean (Vicia faba) fields. Sunflower residue at 600 and 1,400 g m-2 and Treflan (trifluralin) at 50, 75 and 100% of recommended dose were incorporated into the soil alone or in combination with each other. Untreated plots were maintained as a control. Herbicide application in plots amended with sunflower residue had the least total weed count and biomass, which was even better than herbicide used alone. Integration of recommended dose of Treflan with sunflower residue at 1,400 g m-² produced maximum (987.5 g m-2) aboveground biomass of broad bean, which was 74 and 36% higher than control and recommended herbicide dose applied alone, respectively. Combination of herbicide and sunflower residue appeared to better enhance pod number and yield per unit area than herbicide alone. Application of 50% dose of Treflan in plots amended with sunflower residue resulted in similar yield advantage as was noticed with 100% herbicide dose. Chromatographic analysis of residue-infested field soil indicated the presence of several phytotoxic compounds of phenolic nature. Periodic data revealed that maximum suppression in weed density and dry weight synchronized with peak values of phytotoxins observed 4 weeks after incorporation of sunflower residues. Integration of sunflower residues with lower herbicide rates can produce effective weed suppression without compromising yield as a feasible and environmentally sound approach in broad bean fields.
Resumo:
The research objective was to determine the effects of spacing and seeding density of common bean to the period prior to weed interference (PPI) and weed period prior to economic loss (WEEPPEL). The treatments consisted of periods of coexistence between culture and the weeds, with 0 to 10, 0 to 20, 0 to 30, 0 to 40, 0 to 50, 0 to 60, 0 to 70, and 0 to 80 days and a control maintained without weeds. In addition to the periods of coexistence, there were still studies with an inter-row of 0.45 and 0.60 m, 10 and 15 plants m-1. The experimental delineation used was randomized blocks with four repetitions per treatment. The grain productivity of the culture had a reduction of 63, 50, 42 and 57% when the coexistence with the weed plants was during the entire cycle of the culture for a row spacing of 0.45 m and a seeding density of 10 and 15 plants per meter; and a row spacing of 0.60m and a seeding density of 10 and 15 plants per meter, respectively. The PPI occurred in 23, 27, 13, and 19 days after crop emergence and WEEPPEL in 10, 9, 8, and 8 days, respectively.
Resumo:
The irrigated rice production can be limited by various phytopathogenic agents, including root-knot nematodes (Meloidogyne spp.). Thus, the aim of this research was to check the host suitability of plant species most often found off-season and during rice cultivation, to root-knot nematode Meloidogyne graminicola, under two irrigation managements. Two experiments were conducted in a completely randomized design. In the first experiment seven plant species that occur in an area of rice cultivation, in fallow, off-season were evaluated. For the second experiment nine weed species infesting the irrigated rice culture were tested in rainfed and flooding conditions. The sixteen species, kept individually in pots with sterilized substrate, were inoculated with 5,000 eggs and second stage juveniles (J2) of nematode. BRS 410 IRGA rice plants inoculated with M.graminicola were used as control. Two months after inoculation, the root system of each plant was evaluated for number of galls and nematode reproduction factor. It was verified that the species of off-season of rice cultivation Sida rhombifolia, Raphanus raphanistrum, Spergula arvensis, Lotus corniculatus and Trifolium repens, and, during the cycle of rice cultivation, Aeschynomene denticulata, Leersia hexandra, are immune to nematode. The plant species off-season, Avena strigosa and Lolium multiflorum and of cultivation, Alternanthera philoxeroides, red rice, Echinochloa crusgalli, Cyperus difformis, Cyperus esculentus, Cyperus iria and Fimbristylis miliacea would behave as hosts of M.graminicola, mostly under rainfed conditions.
Resumo:
Ruzigrass (Brachiaria ruziziensis, syn. Urochloa ruziziensis) is used as a cover crop in tropical regions because it has a high yield potential, is widely adapted and has a vigorous root system. However, it may affect early growth of the next crop due to allelopathy and competition for soil nitrate. A greenhouse experiment was conducted in glass-walled pots with soil to determine the effect of ruzigrass residues on the initial growth and mineral nutrition of common bean (Phaseolus vulgaris). Ruzigrass was grown in the pots for 50 days and chemically desiccated. Then, common bean was grown: without ruzigrass residues; with ruzigrass shoots placed on the soil surface; with ruzigrass roots left in the soil; and with ruzigrass shoots and roots left undisturbed. Root growth of common bean was decreased by ruzigrass residues, but shoot biomass was not affected when it was grown in the presence of ruzigrass shoots or roots alone. In pots where ruzigrass residues were undisturbed, common bean biomass yield was decreased. Nitrogen concentration in common bean shoot was not affected by ruzigrass shoot on the soil surface, an evidence that the observed decrease in common bean growth probably was due to allelopathic effects rather than competition for nitrogen.
Resumo:
ABSTRACTTo evaluate the effect of planting date and spatial pattern on common bean yield under weed-free and weed-infested conditions, an experiment was conducted in Kelachay, Northern Iran, in 2013. The experimental design was a randomized complete block in a factorial arrangement with three replicates. Factors were planting date (10 August and 20 August), spatial pattern (square and rectangular planting pattern, with a planting distance of 30 x 30 cm and 45 x 20 cm, respectively), and weed management regime (weed-free and weedy conditions, weeded and not weeded throughout the growing season, respectively). Results showed that the main effect of planting date was significant only for pod number per plant and seed number per pod. At the same time, pod number per plant, seed number per pod, pod length, and grain yield were influenced significantly by spatial pattern. Results of ANOVA have also indicated that all traits, except pod length, were influenced significantly by weed-management regimes. Moreover, effect of planting date and spatial pattern were nonsignificant for weed dry weight. Mean comparison has expressed a significant increment in seed yield for square planting arrangement (1,055 kg ha-1) over rectangular (971 kg ha-1). Weeding has also presented an overall 12% and 8% improvement in grain and pod yield over control (weedy check), respectively. Based on the results of this study, weed control, as well as square planting pattern, are recommended for obtaining the highest seed yield in common bean.
Resumo:
ABSTRACTInadequate herbicide application can result in failures in weed control and/or poisoning of the crops, resulting in yield losses. In this research were assessed the effects of the sprayer nozzle boom height in the distribution of the spray solution for weed control, influencing intoxication of beans and crop yield. Experiments were conducted in laboratory and field conditions. In laboratory, the performance of flat spray tip TT 11002 was assessed at heights 0.20, 0.30, 0.40 and 0.50 meters with respect to the target surface. In the field the same heights were assessed in applications of herbicides fomesafen, fluazifop-P-butyl and fomesafen + fluazifop-P-butyl. There was an inverse relationship between the height of the spray boom and the coefficients of variation of the patterns. The mixture better efficiency in a tank of fluazifop-P-butyl + fomesafen was obtained with the height of 0.50 m from the target. This treatment resulted in better weed control, lower poisoning of the bean plants and better crop yield rates.
Resumo:
Six common bean cultivars were crossed in diallel and the segregant populations were assessed in the F2 and F3 generations to compare methodologies for parental selection in a breeding program based on hybridization. The cultivars involved in the diallel were A 114, A 77, ESAL 686, Milionário, Carioca, and Flor de Mayo. The segregant F2 and F3 generations were assessed on the experimental campus of the Universidade Federal de Larvas, in July 1994. It was found that the cultivars differed in their general combining ability (GCA). Flor de Mayo, which belongs to the Durango race, had the largest positive GCA estimate for grain field, and the cultivars from the Mesoamerican race, Milionário and A 114, the smallest GCA estimates. For flowering, the cultivar that most contributed to reduced plant cycle was ESAL 686. There was agreement among the results obtained from the diallel and the estimates of the parameter m + a of the populations. However, it was evident that the estimate of genetic variance of the populations should be considered as a condition to identify the hybrid population that will produce a line with high performance.
Resumo:
Bean golden mosaic is the most important viral disease of the bean crop (Phaseolus vulgaris L.) in Latin America. The genetics of resistance to a Brazilian strain of bean golden mosaic virus (BGMV), was studied in a 4 x 4 diallel cross without reciprocals, among the parental genotypes DOR 303, EMGOPA 201 Ouro, Carnaval, and Redlands Greenleaf C. Seedlings of the four parents, six F1 hybrids, 12 backcrosses, and F2 generations for each combination were inoculated on the eighth day after sowing by exposure to a viruliferous whitefly (Bemisia tabaci Genn.) population for 24 h, in a glasshouse, prior to transplantation to field conditions. The full set of two parents, F1, F2 and respective backcrosses for each combination was considered to be a family. Data were recorded and analyzed for foliar yellowing, plant dwarfing, and pod malformation, using a randomized block design, with two replications. Weighted generation mean analysis was performed for each of the six families. An additive gene action model was significant for the three characteristics evaluated. On the other hand, non-additive gene action had greater absolute value in most cases. Resistance to foliar yellowing conferred by genes from DRO 303 was highly heritable and was expressed equally well in the different genetic backgrounds evaluated. Such resistance may be oligogenic. Broad- and narrow-sense heritabilities were relatively high for all response traits. The three traits studied were all positively correlated, indicating that they can be simultaneously selected for enhancement. The highest correlation coefficient was obtained for dwarfing x pod malformation.
Resumo:
Bean (Phaseolus vulgaris) lines P.I. 207262 and AB 136, both resistant to delta and kappa races of Colletotrichum lindemuthianum, were crossed with Michelite, Dark Red Kidney, and Perry Marrow, susceptible to both races, and with Cornell 49-242, resistant to delta and susceptible to kappa. F1 and F2 reactions demonstrated that P.I. 207262 carries duplicate dominant genes for resistance to the delta race; AB 136 carries a dominant gene. These resistance genes are independent of the Are gene from Cornell 49-242. With respect to the kappa race, F1 and F2 data showed that the resistance controlled by P.I. 207262 and by AB 136 depends on a single dominant gene. Complementary factors were involved with AB 136 resistance to the delta race and with P.I. 207262 resistance to kappa.
Resumo:
Gamma-glutamyltranspeptidase (GGT-EC 2.3.2.2) activity and glutathione (GSH) content were measured in livers of female weanling Wistar rats (N = 5-18), submitted to rice-and-bean diets (13 and 6% w/w protein), both supplemented or not with DL-methionine (0.5 and 0.23 g/100 g dry diet, respectively). After 28 days, the rats on the rice-and-bean diets showed significantly higher levels (four times higher) of liver GGT activity and a concomitant 50% lower concentration of liver GSH in comparison with control groups feeding on casein. The addition of DL-methionine to rice-and-bean diets significantly increased the liver GSH content, which reached levels 50% higher than those found in animals on casein diets. The increase in GSH was accompanied by a decrease in liver GGT activity, which did not reach levels as low as those observed in the control groups. No significant correlation could be established between GGT and GSH changes under the present experimental conditions. Linear correlation analysis only revealed that in animals submitted to unsupplemented rice-and-bean diets GSH concentration was positively associated (P<0.05) with weight gain, food intake and food efficiency. GGT, however, was negatively correlated (P<0.05) with food intake only, and exclusively for supplemented rice-and-bean diets. The high levels of GGT activity observed in the present study for rats receiving a rice-and-bean mixture could be a result of the poor quality of these diets associated with their deficiency in sulfur amino acids. The results also suggest that diet supplementation with methionine could be important in the reduction of the deleterious effects of GSH depletion by restoring the intracellular concentration of this tripeptide.
Resumo:
The presence of phaseolin (a vicilin-like 7S storage globulin) peptides in the seed coat of the legume Phaseolus lunatus L. (lima bean) was demonstrated by N-terminal amino acid sequencing. Utilizing an artificial seed system assay we showed that phaseolin, isolated from both cotyledon and testa tissues of P. lunatus, is detrimental to the nonhost bruchid Callosobruchus maculatus (F) (cowpea weevil) with ED50 of 1.7 and 3.5%, respectively. The level of phaseolin in the seed coat (16.7%) was found to be sufficient to deter larval development of this bruchid. The expression of a C. maculatus-detrimental protein in the testa of nonhost seeds suggests that the protein may have played a significant role in the evolutionary adaptation of bruchids to legume seeds.
Resumo:
This study examined if leucine, arginine or glycine supplementation in adult obese patients (body mass index of 33 ± 4 kg/m²) consuming a Brazilian low energy and protein diet (4.2 MJ/day and 0.6 g protein/kg) affects protein and amino acid metabolism. After four weeks adaptation to this diet, each subject received supplements of these amino acids (equivalent to 0.2 g protein kg-1 day-1) in random order. On the seventh day of each amino acid supplementation, a single-dose 15N-glycine study was carried out. There were no significant differences in protein flux, synthesis or breakdown. The protein flux (grams of nitrogen, gN/9 h) was 55 ± 24 during the nonsupplemented diet intake and 39 ± 10, 44 ± 22 and 58 ± 35 during the leucine-, glycine- and arginine-supplemented diet intake, respectively; protein synthesis (gN/9 h) was 57 ± 24, 36 ± 10, 41 ± 22 and 56 ± 36, respectively; protein breakdown (gN/9 h) was 51 ± 24, 34 ± 10, 32 ± 28 and 53 ± 35, respectively; kinetic balance (gN/9 h) was 3.2 ± 1.8, 4.1 ± 1.7, 3.4 ± 2.9 and 3.9 ± 1.6. There was no difference in amino acid profiles due to leucine, arginine or glycine supplementation. The present results suggest that 0.6 g/kg of dietary protein is enough to maintain protein turnover in obese women consuming a reduced energy diet and that leucine, arginine or glycine supplementation does not change kinetic balance or protein synthesis.
Resumo:
Herbaspirillum seropedicae is an endophytic diazotrophic bacterium, which associates with important agricultural plants. In the present study, we have investigated the attachment to and internal colonization of Phaseolus vulgaris roots by the H. seropedicae wild-type strain SMR1 and by a strain of H. seropedicae expressing a red fluorescent protein (DsRed) to track the bacterium in the plant tissues. Two-day-old P. vulgaris roots were incubated at 30°C for 15 min with 6 x 10(8) CFU/mL H. seropedicae SMR1 or RAM4. Three days after inoculation, 4 x 10(4) cells of endophytic H. seropedicae SMR1 were recovered per gram of fresh root, and 9 days after inoculation the number of endophytes increased to 4 x 10(6) CFU/g. The identity of the recovered bacteria was confirmed by amplification and sequencing of the 16SrRNA gene. Furthermore, confocal microscopy of P. vulgaris roots inoculated with H. seropedicae RAM4 showed that the bacterial cells were attached to the root surface 15 min after inoculation; fluorescent bacteria were visible in the internal tissues after 24 h and were found in the central cylinder after 72 h, showing that H. seropedicae RAM4 is capable of colonizing the roots of the dicotyledon P. vulgaris. Determination of dry weight of common bean inoculated with H. seropedicae SMR1 suggested that this bacterium has a negative effect on the growth of P. vulgaris.