161 resultados para ASA PRETREATMENT
Resumo:
Bryothamnion seaforthii, a red alga common to the Northeastern coast of Brazil, was used to prepare the protein fraction F0/60 by ammonium sulfate precipitation. The chromatography of F0/60 on DEAE-Sephadel column resulted in two lectin fractions, PI and PII, which have antinociceptive properties in rodents. We determined the antinociceptive activity of the PII fraction and of a carbohydrate-containing fraction (CF) in mice. The CF was prepared from the dried algae, after digestion with 100 mM sodium acetate, pH 6.0, containing 5 mM cysteine, EDTA and 0.4% papain, at 60ºC. A 10% cetylpyridinium chloride was added to the filtrate, and the precipitate was dissolved with 2 M NaCl:ethanol (100:15, v/v) followed by the carbohydrate precipitation with ethanol. The final precipitate, in acetone, was dried at 25ºC. The PII fraction markedly inhibited acetic acid-induced abdominal writhing after ip administration (control: 27.1 ± 2.20; PII 0.1 mg/kg: 5.5 ± 1.85; 1 mg/kg: 1.6 ± 0.72 writhes/20 min) and after oral administration (control: 32.0 ± 3.32; PII 0.1 mg/kg: 13.1 ± 2.50; 1 mg/kg: 9.4 ± 3.96 writhes/20 min). PII was also effective against both phases of pain induced by 1% formalin (control, ip: 48.2 ± 2.40 and 27.7 ± 2.56 s; PII: 1 mg/kg, ip: 34.3 ± 5.13 and 5.6 ± 2.14 s; control, po: 44.5 ± 3.52 and 25.6 ± 2.39 s; PII 5 mg/kg, po: 26.5 ± 4.67 and 15.3 ± 3.54 s for the 1st and 2nd phases, respectively) and in the hot-plate test. The CF (ip) also displayed significant antinociceptive properties in all tests but at higher doses (1 and 5 mg/kg, ip and po). Thus, CF at the dose of 5 mg/kg significantly inhibited writhes (ip: 7.1 ± 2.47 and po: 14.5 ± 2.40 writhes/20 min) as well as the 1st (po: 19.6 ± 1.74 s) and 2nd (po: 7.1 ± 2.24 s) phases of the formalin test compared to controls ip and po. The antinociceptive effects of both the PII and CF in the formalin and hot-plate tests were prevented at least partially by pretreatment with the opioid receptor antagonist naloxone (2 mg/kg, sc). Moreover, both fractions retained antinociceptive activity in the acetic acid-induced writhing test following heating, a procedure which abolished the hemagglutinating activity of the fraction, presumably due to lectins also present. Finally, both fractions also prolonged the barbiturate-induced sleeping time. These results indicate that carbohydrate molecules present in the PII (26.8% carbohydrate) and CF (21% of the alga dried weight) obtained from B. seaforthii display pronounced antinociceptive activity which is resistant to heat denaturation and is mediated by an opioid mechanism, as indicated by naloxone inhibition.
Resumo:
The aim of the present study was to assess the influence of hyperbaric oxygenation (HBO) on rat liver regeneration before and after partial hepatectomy. Rats were sacrificed 54 h after 15% hepatectomy, liver and body weights were measured, and serum alanine transaminase (ALT) and aspartate transaminase (AST) activity and albumin levels were determined. The lipid peroxide level, as indicated by malondialdehyde production in the remnant liver was measured, and liver sections were analyzed by light microscopy. Five groups of 10 rats in each group were studied. The preHBO and pre-hyperbaric pressure (preHB) groups were treated before partial hepatectomy with 100% O2 and 21% O2, respectively, at 202,650 pascals, daily for 3 days (45 min/day). The control group was not treated before partial hepatectomy and recovered under normal ambient conditions after the procedure. Groups postHBO and postHB were treated after partial hepatectomy with HBO and HB, respectively, three times (45 min/day). The preHBO group presented a significant increase in the initiation of the regeneration process of the liver 54 h postoperatively. The liver/body weight ratio was 0.0618 ± 0.0084 in the preHBO compared to 0.0517 ± 0016 g/g in the control animals (P = 0.016). In addition, the preHBO group showed significant better liver function (evaluated by the lowest serum ALT and AST activities, P = 0.002 and P = 0.008, respectively) and showed a significant decrease in serum albumin levels compared to control (P < 0.001). Liver lipid peroxide concentration was lowest in the preHBO group (P < 0.001 vs control and postHBO group) and light microscopy revealed that the composition of liver lobules in the preHBO group was the closest to normal histological features. These results suggest that HBO pretreatment was beneficial for rat liver regeneration after partial hepatectomy.
Resumo:
The antinociceptive effect of six novel synthetic pyrazolines (3-ethoxymethyl-5-ethoxycarbonyl-1H-pyrazole (Pz 1) and its corresponding 1-substituted methyl (Pz 2) and phenyl (Pz 3) analogues, and 3-(1-ethoxyethyl)-5-ethoxycarbonyl-1H-pyrazole (Pz 4) and its corresponding 1-substituted methyl (Pz 5) and phenyl (Pz 6) analogues) was evaluated by the tail immersion test in adult male albino mice. The animals (N = 11-12 in each group) received vehicle (5% Tween 80, 10 ml/kg, sc) or 1.5 mmol/kg of each of the pyrazolines (Pz 1-Pz 6), sc. Fifteen, thirty and sixty minutes after drug administration, the mice were subjected to the tail immersion test. Thirty minutes after drug administration Pz 2 and Pz 3 increased tail withdrawal latency (vehicle = 3.4 ± 0.2; Pz 2 = 5.2 ± 0.4; Pz 3 = 5.9 ± 0.4 s; mean ± SEM), whereas the other pyrazolines did not present antinociceptive activity. Dose-effect curves (0.15 to 1.5 mmol/kg) were constructed for the bioactive pyrazolines. Pz 2 (1.5 mmol/kg, sc) impaired motor coordination in the rotarod and increased immobility in the open-field test. Pz 3 did not alter rotarod performance and spontaneous locomotion, but increased immobility in the open field at the dose of 1.5 mmol/kg. The involvement of opioid mechanisms in the pyrazoline-induced antinociception was investigated by pretreating the animals with naloxone (2.75 µmol/kg, sc). Naloxone prevented Pz 3- but not Pz 2-induced antinociception. Moreover, naloxone pretreatment did not alter Pz 3-induced immobility. We conclude that Pz 3-induced antinociception involves opioid mechanisms but this is not the case for Pz 2.
Resumo:
Several studies have demonstrated the involvement of the central nucleus of the amygdala (CEA) in the modulation of defensive behavior and in antinociceptive regulation. In a previous study, we demonstrated the existence of a cholinergic-opioidergic interaction in the CEA, modulating the defensive response of tonic immobility in guinea pigs. In the present study, we investigated a similar interaction in the CEA, but now involved in the regulation of the nociceptive response. Microinjection of carbachol (2.7 nmol) and morphine (2.2 nmol) into the CEA promoted antinociception up to 45 min after microinjection in guinea pigs as determined by a decrease in the vocalization index in the vocalization test. This test consists of the application of a peripheral noxious stimulus (electric shock into the subcutaneous region of the thigh) that provokes the emission of a vocalization response by the animal. Furthermore, the present results demonstrated that the antinociceptive effect of carbachol (2.7 nmol; N = 10) was blocked by previous administration of atropine (0.7 nmol; N = 7) or naloxone (1.3 nmol; N = 7) into the same site. In addition, the decrease in the vocalization index induced by the microinjection of morphine (2.2 nmol; N = 9) into the CEA was prevented by pretreatment with naloxone (1.3 nmol; N = 11). All sites of injection were confirmed by histology. These results indicate the involvement of the cholinergic and opioidergic systems of the CEA in the modulation of antinociception in guinea pigs. In addition, the present study suggests that cholinergic transmission may activate the release of endorphins/enkephalins from interneurons of the CEA, resulting in antinociception.
Resumo:
We describe the behavior of the snail Megalobulimus abbreviatus upon receiving thermal stimuli and the effects of pretreatment with morphine and naloxone on behavior after a thermal stimulus, in order to establish a useful model for nociceptive experiments. Snails submitted to non-functional (22ºC) and non-thermal hot-plate stress (30ºC) only displayed exploratory behavior. However, the animals submitted to a thermal stimulus (50ºC) displayed biphasic avoidance behavior. Latency was measured from the time the animal was placed on the hot plate to the time when the animal lifted the head-foot complex 1 cm from the substrate, indicating aversive thermal behavior. Other animals were pretreated with morphine (5, 10, 20 mg/kg) or naloxone (2.5, 5.0, 7.5 mg/kg) 15 min prior to receiving a thermal stimulus (50ºC; N = 9 in each group). The results (means ± SD) showed an extremely significant difference in response latency between the group treated with 20 mg/kg morphine (63.18 ± 14.47 s) and the other experimental groups (P < 0.001). With 2.5 mg/kg (16.26 ± 3.19 s), 5.0 mg/kg (11.53 ± 1.64 s) and 7.5 mg/kg naloxone (7.38 ± 1.6 s), there was a significant, not dose-dependent decrease in latency compared to the control (33.44 ± 8.53 s) and saline groups (29.1 ± 9.91 s). No statistically significant difference was found between the naloxone-treated groups. With naloxone plus morphine, there was a significant decrease in latency when compared to all other groups (minimum 64% in the saline group and maximum 83.2% decrease in the morphine group). These results provide evidence of the involvement of endogenous opioid peptides in the control of thermal withdrawal behavior in this snail, and reveal a stereotyped and reproducible avoidance behavior for this snail species, which could be studied in other pharmacological and neurophysiological studies.
Resumo:
It is widely accepted that the classical constant-temperature hot-plate test is insensitive to cyclooxygenase inhibitors. In the current study, we developed a variant of the hot-plate test procedure (modified hot-plate (MHP) test) to measure inflammatory nociception in freely moving rats and mice. Following left and right hind paw stimulation with a phlogogen and vehicle, respectively, the animals were placed individually on a hot-plate surface at 51ºC and the withdrawal latency for each paw was determined simultaneously in measurements performed at 15, 60, 180, and 360 min post-challenge. Plantar stimulation of rats (250 and 500 µg/paw) and mice (125-500 µg/paw) with carrageenan led to a rapid hyperalgesic response of the ipsilateral paw that reached a plateau from 15 to 360 min after challenge. Pretreatment with indomethacin (4 mg/kg, ip) inhibited the phenomenon at all the times analyzed. Similarly, plantar stimulation of rats and mice with prostaglandin E2 (0.5 and 1 µg/paw) also resulted in rapid hyperalgesia which was first detected 15 min post-challenge. Finally, we observed that the MHP test was more sensitive than the classical Hargreaves' test, being able to detect about 4- and 10-fold lower doses of prostaglandin E2 and carrageenan, respectively. In conclusion, the MHP test is a simple and sensitive method for detecting peripheral hyperalgesia and analgesia in rats and mice. This test represents a low-cost alternative for the study of inflammatory pain in freely moving animals.
Resumo:
The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP) on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm) yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.
Resumo:
Acrolein is a urinary metabolite of cyclophosphamide and ifosfamide, which has been reported to be the causative agent of hemorrhagic cystitis induced by these compounds. A direct cytotoxic effect of acrolein, however, has not yet been demonstrated. In the present study, the effects of intravesical injection of acrolein and mesna, the classical acrolein chemical inhibitor, were evaluated. Male Swiss mice weighing 25 to 35 g (N = 6 per group) received saline or acrolein (25, 75, 225 µg) intravesically 3, 6, 12, and 24 h before sacrifice for evaluation of bladder wet weight, macroscopic and histopathological changes by Gray's criteria, and 3 and 24 h for assessment of increase in vascular permeability. In other animals, mesna was administered intravesically (2 mg) or systemically (80 mg/kg) 1 h before acrolein. Intravesical administration of acrolein induced a dose- and time-dependent increase in vascular permeability and bladder wet weight (within 3 h: 2.2- and 21-fold increases in bladder wet weight and Evans blue dye exuded, respectively, at doses of 75 µg/bladder), as confirmed by Gray's criteria. Pretreatment with mesna (2-mercaptoethanesulfonic acid), which interacts with acrolein resulting in an inactive compound, inhibited all changes induced by acrolein. Our results are the first demonstration that intravesical administration of acrolein induces hemorrhagic cystitis. This model of acrolein-induced hemorrhagic cystitis in mice may be an important tool for the evaluation of the mechanism by which acrolein induces bladder lesion, as well as for investigation of new uroprotective drugs.
Resumo:
Central angiotensin II (AngII) stimulates water and salt solution intake. Pretreatment with low-dose mineralocorticoid (DOCA) enhances this AngII-induced intake of salt solutions (the synergy theory) in Wistar and Sprague Dawley rats but not in Fischer rats. This response is mediated via the AT-1 receptor. Electrophysiological experiments using iontophoretic application of AngII and the AT-1 receptor-specific non-peptide antagonist losartan showed excitation of neurons in the preoptic/medial septum region of urethane-anesthetized male Wistar rats. DOCA pretreatment further enhances this neuronal excitation in response to AngII and reduces the responses to losartan. This generated the hypothesis that DOCA-enhanced AngII-induced neuronal excitation is the neural support for the synergy theory. AT-2 receptors modulate these intake responses depending on sodium in the diet, and diuretic-induced dehydration during pregnancy produces a higher salt intake in the offspring. AngII-induced salt and water intakes were tested in offspring from Sprague Dawley mothers with only 1.8% NaCl to drink in which half were treated with furosemide. The important observations were a) the AT-1 antagonist alone suppressed intakes in offspring from mothers not treated with furosemide, b) both AT-1 and AT-2 antagonists suppressed intakes in offspring from furosemide-treated mothers, and c) combined administration of AT-1 and AT-2 antagonists greatly suppressed water intake in offspring from mothers not treated with furosemide. These results suggest that AT-1 and AT-2 receptors have variable properties (receptor number and/or second messengers). Furthermore, the activity and function of these central AngII receptors depend on the background mineralocorticoid levels. The exact mechanism of this influence, however, remains to be determined.
Resumo:
Given the loss of therapeutic efficacy associated with the development of resistance to lamivudine (LMV) and the availability of new alternative treatments for chronic hepatitis B patients, early detection of viral genotypic resistance could allow the clinician to consider therapy modification before viral breakthrough and biochemical relapse occur. To this end, 28 LMV-treated patients (44 ± 12 years; 24 men), on their first therapy schedule, were monitored monthly at four Brazilian centers for the emergence of drug resistance using the reverse hybridization-based INNO-LiPA HBV DR assay and occasionally sequencing (two cases). Positive viral responses (HBV DNA clearance) after 6, 12, and 18 months of therapy were achieved by 57, 68, and 53% of patients, while biochemical responses (serum alanine aminotransferase normalization) were observed in 82, 82, and 53% of cases. All viral breakthrough cases (N = 8) were related to the emergence of YMDD variants observed in 7, 21, and 35% of patients at 6, 12, and 18 months, respectively. The emergence of these variants was not associated with viral genotype, HBeAg expression status, or pretreatment serum alanine aminotransferase levels. The detection of resistance-associated mutations was observed before the corresponding biochemical flare (41 ± 14 and 60 ± 15 weeks) in the same individuals. Then, if highly sensitive LMV drug resistance testing is carried out at frequent and regular intervals, the relatively long period (19 ± 2 weeks) between the emergence of viral resistance and the onset of biochemical relapse can provide clinicians with ample time to re-evaluate drug therapy.
Resumo:
The ability of the clinically used cephalosporins: cephalothin, cefotaxime and cefotiam to induce lipid peroxidation (LPO) and renal damage was compared to that of nephrotoxic cephaloridine under in vivo conditions. Glutathione was measured in rat liver or in renal cortex as non-protein sulfhydryls. LPO was measured in plasma, renal cortex and liver by the generation of malondialdehyde or as the increase in renal cortical concentration of conjugated dienes. Impairment of renal function was measured as the decrease in renal cortical accumulation of the organic anion p-aminohippurate (PAH). Administration of cephalosporins to rats as a single dose (2000 mg/kg, ip) induced a significant glutathione-depletion in the renal cortex with cephaloridine, and in the liver with cephaloridine, cephalothin and cefotiam. Treatment of rats with cephaloridine, cephalothin and cefotiam (200, 500, or 1000 mg kg-1 day-1, ip) for 5 days resulted in a dose-dependent increase of LPO in the renal cortex. While cephaloridine induced the highest concentration of conjugated diene, cefotaxime had no effect. Measurements of PAH accumulation in renal cortical slices from cephalosporin-treated rats showed a dose-dependent decrease in the renal cortical accumulation of PAH. Pretreatment with the antioxidants vitamin E or cyanidanol (400 mg kg-1 day-1, ip) 1 h before treatment with cephaloridine, cephalothin or cefotiam (1000 mg kg-1 day-1, ip) for 3 days inhibited cephalosporin-induced LPO and significantly reduced the impairment of renal cortical accumulation of PAH. The potential of different cephalosporins for inducing LPO and reducing PAH accumulation was ranked as follows: cephaloridine > cephalothin > cefotiam > cefotaxime.
Resumo:
Sleep disturbance is among the many consequences of ethanol abuse in both humans and rodents. Ethanol consumption can reduce REM or paradoxical sleep (PS) in humans and rats, respectively. The first aim of this study was to develop an animal model of ethanol-induced PS suppression. This model administered intragastrically (by gavage) to male Wistar rats (3 months old, 200-250 g) 0.5 to 3.5 g/kg ethanol. The 3.5 g/kg dose of ethanol suppressed the PS stage compared with the vehicle group (distilled water) during the first 2-h interval (0-2 h; 1.3 vs 10.2; P < 0.001). The second aim of this study was to investigate the mechanisms by which ethanol suppresses PS. We examined the effects of cholinergic drug pretreatment. The cholinergic system was chosen because of the involvement of cholinergic neurotransmitters in regulating the sleep-wake cycle. A second set of animals was pretreated with 2.5, 5.0, and 10 mg/kg pilocarpine (cholinergic agonist) or atropine (cholinergic antagonist). These drugs were administered 1 h prior to ethanol (3.5 g/kg) or vehicle. Treatment with atropine prior to vehicle or ethanol produced a statistically significant decrease in PS, whereas pilocarpine had no effect on minutes of PS. Although the mechanism by which ethanol induces PS suppression is not fully understood, these data suggest that the cholinergic system is not the only system involved in this interaction.
Resumo:
The generation of bradykinin (BK; Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) in blood and kallidin (Lys-BK) in tissues by the action of the kallikrein-kinin system has received little attention in non-mammalian vertebrates. In mammals, kallidin can be generated by the coronary endothelium and myocytes in response to ischemia, mediating cardioprotective events. The plasma of birds lacks two key components of the kallikrein-kinin system: the low molecular weight kininogen and a prekallikrein activator analogous to mammalian factor XII, but treatment with bovine plasma kallikrein generates ornitho-kinin [Thr6,Leu8]-BK. The possible cardioprotective effect of ornitho-kinin infusion was investigated in an anesthetized, open-chest chicken model of acute coronary occlusion. A branch of the left main coronary artery was reversibly ligated to produce ischemia followed by reperfusion, after which the degree of myocardial necrosis (infarct size as a percent of area at risk) was assessed by tetrazolium staining. The iv injection of a low dose of ornitho-kinin (4 µg/kg) reduced mean arterial pressure from 88 ± 12 to 42 ± 7 mmHg and increased heart rate from 335 ± 38 to 402 ± 45 bpm (N = 5). The size of the infarct was reduced by pretreatment with ornitho-kinin (500 µg/kg infused over a period of 5 min) from 35 ± 3 to 10 ± 2% of the area at risk. These results suggest that the physiological role of the kallikrein-kinin system is preserved in this animal model in spite of the absence of two key components, i.e., low molecular weight kininogen and factor XII.
Resumo:
Pretreatment of Escherichia coli cultures with the iron chelator 2,2’-dipyridyl (1 mM) protects against the lethal effects of low concentrations of hydrogen peroxide (<15 mM). However, at H2O2 concentrations equal to or greater than 15 mM, dipyridyl pretreatment increases lethality and mutagenesis, which is attributed to the formation of different types of DNA lesions. We show here that pretreatment with dipyridyl (1 mM) prior to challenge with high H2O2 concentrations (≥15 mM) induced mainly G:C→A:T transitions (more than 100X with 15 mM and more than 250X with 20 mM over the spontaneous mutagenesis rate) in E. coli. In contrast, high H2O2 concentrations in the absence of dipyridyl preferentially induced A:T→T:A transversions (more than 1800X and more than 300X over spontaneous mutagenesis for 15 and 20 mM, respectively). We also show that in the fpg nth double mutant, the rpoB gene mutation (RifS-RifR) induced by 20 mM H2O2 alone (20X higher) was increased in 20 mM H2O2 and dipyridyl-treated cultures (110X higher), suggesting additional and/or different lesions in cells treated with H2O2 under iron deprivation. It is suggested that, upon iron deprivation, cytosine may be the main damaged base and the origin of the pre-mutagenic lesions induced by H2O2.
Resumo:
Dipyrone (Dp), 4-aminoantipyrine (AA) and antipyrine (At) administered iv and Dp administered icv delay gastric emptying (GE) in rats. The participation of capsaicin (Cps)-sensitive afferent fibers in this phenomenon was evaluated. Male Wistar rats were pretreated sc with Cps (50 mg/kg) or vehicle between the first and second day of life and both groups were submitted to the eye-wiping test. GE was determined in these animals at the age of 8/9 weeks (weight: 200-300 g). Ten minutes before the study, the animals of both groups were treated iv with Dp, AA or At (240 μmol/kg), or saline; or treated icv with Dp (4 μmol/animal) or saline. GE was determined 10 min after treatment by measuring % gastric retention (GR) of saline labeled with phenol red 10 min after orogastric administration. Percent GR (mean ± SEM, N = 8) in animals pretreated with Cps and treated with Dp, AA or At (35.8 ± 3.2, 35.4 ± 2.2, and 35.6 ± 2%, respectively) did not differ from the GR of saline-treated animals pretreated with vehicle (36.8 ± 2.8%) and was significantly lower than in animals pretreated with vehicle and treated with the drugs (52.1 ± 2.8, 66.2 ± 4, and 55.8 ± 3%, respectively). The effect of icv administration of Dp (N = 6) was not modified by pretreatment with Cps (63.3 ± 5.7%) compared to Dp-treated animals pretreated with vehicle (62.3 ± 2.4%). The results suggest the participation of capsaicin-sensitive afferent fibers in the delayed GE induced by iv administration of Dp, AA and At, but not of icv Dp.