125 resultados para ADJUSTED WALD RESIDUAL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in urinary porphyrin excretion may be the result of hereditary causes and/or from environmental or occupational exposure. The objective of this study was to measure the amount of some porphyrins in spot urine samples obtained from volunteers randomly selected from a healthy adult population of São Paulo with a sensitive HPLC method and to estimate normal ranges for a non-exposed population. Spot urine samples were collected from 126 subjects (both genders, 18 to 65 years old) not occupationally exposed to porphyrinogenic agents. Porphyrin fractions were separated on RP-18 HPLC column eluted with a methanol/ammonium acetate buffer gradient, pH 4.0, and measured fluorometrically (excitation 405 nm/emission 620 nm). The amount of porphyrins was corrected for urinary creatinine excretion. Only 8-carboxyl (uro) and 4-carboxyl (copro) porphyrins were quantified as µg/g creatinine. Data regarding age, gender, occupational activities, smoking and drinking habits were analyzed by Mann-Whitney and Kruskal-Wallis tests. Uroporphyrin results did not differ significantly between the subgroups studied. Copro and uro + copro porphyrins were significantly different for smokers (P = 0.008) and occupational activities (P = 0.004). With respect to alcohol consumption, only men drinking >20 g/week showed significant differences in the levels of copro (P = 0.022) and uro + copro porphyrins (P = 0.012). The 2.5-97.5th percentile limit values, excluding those for subjects with an alcohol drinking habit >20 g/week, were 0-20.8, 11.7-93.1, and 15.9-102.9 µg/g creatinine for uro, copro and uro + copro porphyrins, respectively. These percentile limit values can be proposed as a first attempt to provide urinary porphyrin reference values for our population, serving for an early diagnosis of porphyrinopathies or as biomarkers of exposure to porphyrinogenic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic obstructive pulmonary disease (COPD) is associated with inflammatory cell reactions, tissue destruction and lung remodeling. Many signaling pathways for these phenomena are still to be identified. We developed a mouse model of COPD to evaluate some pathophysiological mechanisms acting during the initial stage of the disease. Forty-seven 6- to 8-week-old female C57/BL6 mice (approximately 22 g) were exposed for 2 months to cigarette smoke and/or residual oil fly ash (ROFA), a concentrate of air pollution. We measured lung mechanics, airspace enlargement, airway wall thickness, epithelial cell profile, elastic and collagen fiber deposition, and by immunohistochemistry transforming growth factor-β1 (TGF-β1), macrophage elastase (MMP12), neutrophils and macrophages. We observed regional airspace enlargements near terminal bronchioles associated with the exposure to smoke or ROFA. There were also increases in airway resistance and thickening of airway walls in animals exposed to smoke. In the epithelium, we noted a decrease in the ciliated cell area of animals exposed to smoke and an increase in the total cell area associated with exposure to both smoke and ROFA. There was also an increase in the expression of TGF-β1 both in the airways and parenchyma of animals exposed to smoke. However, we could not detect inflammatory cell recruitment, increases in MMP12 or elastic and collagen fiber deposition. After 2 months of exposure to cigarette smoke and/or ROFA, mice developed regional airspace enlargements and airway epithelium remodeling, although no inflammation or increases in fiber deposition were detected. Some of these phenomena may have been mediated by TGF-β1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autonomic nervous system maintains homeostasis, which is the state of balance in the body. That balance can be determined simply and noninvasively by evaluating heart rate variability (HRV). However, independently of autonomic control of the heart, HRV can be influenced by other factors, such as respiratory parameters. Little is known about the relationship between HRV and spirometric indices. In this study, our objective was to determine whether HRV correlates with spirometric indices in adults without cardiopulmonary disease, considering the main confounders (e.g., smoking and physical inactivity). In a sample of 119 asymptomatic adults (age 20-80 years), we evaluated forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). We evaluated resting HRV indices within a 5-min window in the middle of a 10-min recording period, thereafter analyzing time and frequency domains. To evaluate daily physical activity, we instructed participants to use a triaxial accelerometer for 7 days. Physical inactivity was defined as <150 min/week of moderate to intense physical activity. We found that FVC and FEV1, respectively, correlated significantly with the following aspects of the RR interval: standard deviation of the RR intervals (r =0.31 and 0.35), low-frequency component (r =0.38 and 0.40), and Poincaré plot SD2 (r =0.34 and 0.36). Multivariate regression analysis, adjusted for age, sex, smoking, physical inactivity, and cardiovascular risk, identified the SD2 and dyslipidemia as independent predictors of FVC and FEV1 (R2=0.125 and 0.180, respectively, for both). We conclude that pulmonary function is influenced by autonomic control of cardiovascular function, independently of the main confounders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown the beneficial effect of peptides, an unexploited source could be Phaseolus lunatus being an important raw material for those functional products in order to improve their utilization. In addition to improve the beneficial effect of bioactive peptides the microencapsulation could be a way to protect the peptides against the environment to which they are exposed. P. lunatus protein fraction (<10 kDa of weight) was encapsulated using a blend of carboxymethylated flamboyant gum (CFG) and sodium alginate (SA) at different concentrations of CaCl2 and hardening times. After in vitro digestion of microcapsules the residual activity, in the intestinal system, both inhibition of agiotensin-converting enzyme (I-ACE) and antioxidant activity obtained were in a range of 0.019-0.136 mg/mL and 570.64-813.54 mM of TEAC respectively. The microencapsulation employed CFG/SA blends could be used controlled delivery of peptide fractions with potential use as a nutraceutical or therapeutic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Em pacientes com doença renal crônica (DRC) em hemodiálise (HD), a hipertrofia ventricular esquerda (HVE) está relacionada ao aumento do índice de resistência vascular periférica (IRVP) total e à sobrecarga de volume. A presença da diurese residual (DR) nesses pacientes possibilita maior controle volêmico. Avaliamos as modificações morfofuncionais do ventrículo esquerdo (VE) em pacientes com DRC em HD com e sem diurese residual. Trinta e um pacientes não diabéticos foram divididos em dois grupos: com diurese residual (DR+) (n = 17) e sem diurese residual (DR-) (n = 14). Em ambos os grupos, DR+ vs. DR-, ocorreram diferenças no índice cardíaco (3,9 ± 0,20 vs. 3,0 ± 0,21 L/min/m²; p = 0,0056), no índice sistólico (54 ± 2,9 vs. 45 ± 3,3 mL/b/m²; p = 0,04), no volume diastólico final (141 ± 6,7 vs. 112 ± 7,6 mL; p = 0,008), no diâmetro diastólico final (52 ± 0,79 vs. 48 ± 1,12 mm; p = 0,0072) e no IRVP total (1.121 ± 56 vs. 1.529 ± 111 dina.seg.cm-5; p = 0,001). O grupo DR+ apresentou menor espessamento relativo de parede (ERP) do que o DR- (0,38 ± 0,01 vs. 0,45 ± 0,01; p = 0,0008). A fração de ejeção (66,00 ± 1,24 vs. 66,0 ± 1,46%; p = 0,873) e o índice de massa ventricular esquerda (132 ± 6,0 vs. 130 ± 8,3 g/m; p = 0,798) foram similares em ambos os grupos. O volume de diurese residual correlacionou-se com o espessamento da parede ventricular (r = 0,42; p = 0,0186) e com o índice de resistência vascular periférica (r = -0,48; p = 0,0059). Em conclusão, a presença ou não da diurese residual, em pacientes com doença renal crônica e em hemodiálise, pode ser responsável por modificações na função cardíaca sistólica.