124 resultados para 321026 Reproduction
Resumo:
Our results have shown the wide diversity of parasites within New World Leishmania. Biochemical and molecular characterization of species within the genus has revealed that much of the population heterogeneity has a genetic basis. The source of genetic diversity among Leishmania appears to arise from predominantly asexual, clonal reproduction, although occasional bouts of sexual reproduction can not be ruled out. Genetic variation is extensive with some clones widely distributed and others seemingly unique and localized to a particular endemic focus. Epidemiological studies of leishmaniasis has been directed to the ecology and dynamics of transmission of Leishmania species/variants, particularly in localized areas. Future research using molecular techniques should aim to identify and follow Leishmania types in nature and correlate genetic typing with important clinical characteristics such as virulence, pathogenicity, drug resistance and antigenic variation. The epidemiological significance of such variation not only has important implications for the control of the leishmaniases, but would also help to elucidate the evolutionary biology of the causative agents.
Resumo:
This study focuses on the possibility of experimental hybridization among host snail species for Schistosoma mansoni in Brazil, with morphological characterization of the hybrids found. By using albinism as a genetic marker, intraspecific crossbreedings were performed between two strains of each species involved, in addition to interspecific crossbreedings; the only viable crossbreeding was between pigmented Biomphalaria glabrata (Paulista, PE) and albino B. tenagophila (Joinville, SC), with the formation of F1 and F2 generations. All offspring in F1 displayed black eyes and a renal ridge on the mantle, while F2 displayed dissociated morphological traits. With regard to reproduction, F1 was more efficient than F2. The experiment's results suggest post-zygotic reproductive isolation.
Resumo:
Changes in life tables of Rhodnius neivai due to variations of environmental temperature were studied, based on nine cohorts. Three cohorts were kept at 22°C, three at 27°C and three at 32°C. Cohorts were censused daily during nymphal instars and weekly in adults. Nine complete horizontal life tables were built. A high negative correlation between temperature and age at first laying was registered (r=-0,84). Age at maximum reproduction was significantly lower at 32°C. Average number of eggs/female/week and total eggs/female on its life time were significantly lower at 22°C. Total number of egg by cohort and total number of reproductive weeks were significantly higher at 27°C. At 32°C, generational time was significantly lower. At 27°C net reproductive rate and total reproductive value were significantly higher. At 22°C, intrinsic growth, finite growth and finite birth rates were significantly lower. At 22°C, death instantaneous rate was significantly higher.
Resumo:
The life cycle of Clerada apicicornis was determined under laboratory conditions. Mean development times in days were: egg 27.2, nymph I 12.5, nymph II 12, nymph III 13.4, nymph IV 16.4, nymph V 26. The life expectancy of adults ranged from 117 to 317 days (mean 196 days). Based on a cohort of 29 females of C. apicicornis, a horizontal life table was constructed. The following predictive parameters were obtained: net rate of reproduction (Ro = 48.31), intrinsic rate of population increase (r m = 0.153), generation time (Tc = 28.20 weeks), and finite rate of population increment (lambda = 1.16). The reproductive value (Vx) for each age class of the cohort females was calculated. The following observed parameters were calculated after mortality in each stage: net rate of reproduction (R'o=13.4), intrinsic rate of population increase (r c' =0.09 ), and finite rate of population increment (lambda' =1.1). The generation time (Tc' =27.4) was estimated using the methods of Laughlin and Bengstron. A vertical life table was elaborated and mortality was described for one generation of the cohort.