208 resultados para virulence markers
Resumo:
Silent transmission of Mycobacterium leprae, as evidenced by stable leprosy incidence rates in various countries, remains a health challenge despite the implementation of multidrug therapy worldwide. Therefore, the development of tools for the early diagnosis of M. leprae infection should be emphasised in leprosy research. As part of the continuing effort to identify antigens that have diagnostic potential, unique M. leprae peptides derived from predicted virulence-associated proteins (group IV.A) were identified using advanced genome pattern programs and bioinformatics. Based on human leukocyte antigen (HLA)-binding motifs, we selected 21 peptides that were predicted to be promiscuous HLA-class I T-cell epitopes and eight peptides that were predicted to be HLA-class II restricted T-cell epitopes for field-testing in Brazil, Ethiopia and Nepal. High levels of interferon (IFN)-γ were induced when peripheral blood mononuclear cells (PBMCs) from tuberculoid/borderline tuberculoid leprosy patients located in Brazil and Ethiopia were stimulated with the ML2055 p35 peptide. PBMCs that were isolated from healthy endemic controls living in areas with high leprosy prevalence (EChigh) in Ethiopia also responded to the ML2055 p35 peptide. The Brazilian EChigh group recognised the ML1358 p20 and ML1358 p24 peptides. None of the peptides were recognised by PBMCs from healthy controls living in non-endemic region. In Nepal, mixtures of these peptides induced the production of IFN-γ by the PBMCs of leprosy patients and EChigh. Therefore, the M. leprae virulence-associated peptides identified in this study may be useful for identifying exposure to M. leprae in population with differing HLA polymorphisms.
Resumo:
Despite the increasing importance of Enterococcus as opportunistic pathogens, their virulence factors are still poorly understood. This study determines the frequency of virulence factors in clinical and commensal Enterococcus isolates from inpatients in Porto Alegre, Brazil. Fifty Enterococcus isolates were analysed and the presence of the gelE, asa1 and esp genes was determined. Gelatinase activity and biofilm formation were also tested. The clonal relationships among the isolates were evaluated using pulsed-field gel electrophoresis. The asa1, gelE and esp genes were identified in 38%, 60% and 76% of all isolates, respectively. The first two genes were more prevalent in Enterococcus faecalis than in Enterococcus faecium, as was biofilm formation, which was associated with gelE and asa1 genes, but not with the esp gene. The presence of gelE and the activity of gelatinase were not fully concordant. No relationship was observed among any virulence factors and specific subclones of E. faecalis or E. faecium resistant to vancomycin. In conclusion, E. faecalis and E. faecium isolates showed significantly different patterns of virulence determinants. Neither the source of isolation nor the clonal relationship or vancomycin resistance influenced their distribution.
Resumo:
Prolonged culturing of many microorganisms leads to the loss of virulence and a reduction of their infective capacity. However, little is known about the changes in the pathogenic strains of Acanthamoeba after long culture periods. Our study evaluated the effect of prolonged culturing on the invasiveness of different isolates of Acanthamoeba in an in vivo rat model. ATCC strains of Acanthamoeba, isolates from the environment and clinical cases were evaluated. The in vivo model was effective in establishing the infection and differentiating the pathogenicity of the isolates and re-isolates. The amoebae cultured in the laboratory for long periods were less virulent than those that were recently isolated, confirming the importance of passing Acanthamoeba strains in animal models.
Resumo:
Saint Louis encephalitis virus caused an outbreak of febrile illness and encephalitis cases in Córdoba, Argentina, in 2005. During this outbreak, the strain CbaAr-4005 was isolated from Culex quinquefasciatus mosquitoes. We hypothesised that this epidemic variant would be more virulent in a mouse model than two other non-epidemic strains (78V-6507 and CorAn-9275) isolated under different epidemiological conditions. To test this hypothesis, we performed a biological characterisation in a murine model, including mortality, morbidity and infection percentages and lethal infection indices using the three strains. Mice were separated into age groups (7, 10 and 21-day-old mice) and analysed after infection. The strain CbaAr-4005 was the most infective and lethal of the three variants, whereas the other two strains exhibited a decreasing mortality percentage with increasing animal age. The strain CbaAr-4005 produced the highest morbidity percentages and no significant differences among age groups were observed. The epidemic strain caused signs of illness in all inoculated animals and showed narrower ranges from the onset of symptoms than the other strains. CbaAr-4005 was the most virulent for Swiss albino mice. Our results highlight the importance of performing biological characterisations of arbovirus strains likely to be responsible for emerging or reemerging human diseases.
Resumo:
While the influence of water in Helicobacter pylori culturability and membrane integrity has been extensively studied, there are little data concerning the effect of this environment on virulence properties. Therefore, we studied the culturability of water-exposed H. pylori and determined whether there was any relation with the bacterium’s ability to adhere, produce functional components of pathogenicity and induce inflammation and alterations in apoptosis in an experimental model of human gastric epithelial cells. H. pylori partially retained the ability to adhere to epithelial cells even after complete loss of culturability. However, the microorganism is no longer effective in eliciting in vitro host cell inflammation and apoptosis, possibly due to the non-functionality of the cag type IV secretion system. These H. pylori-induced host cell responses, which are lost along with culturability, are known to increase epithelial cell turnover and, consequently, could have a deleterious effect on the initial H. pylori colonisation process. The fact that adhesion is maintained by H. pylori to the detriment of other factors involved in later infection stages appears to point to a modulation of the physiology of the pathogen after water exposure and might provide the microorganism with the necessary means to, at least transiently, colonise the human stomach.
Resumo:
The aim of the present study was to detect natural infection by Leishmania (Leishmania) infantum in Lutzomyia longipalpis captured in Barcarena, state of Pará, Brazil, through the use of three primer sets. With this approach, it is unnecessary to previously dissect the sandfly specimens. DNA of 280 Lu. longipalpis female specimens were extracted from the whole insects. PCR primers for kinetoplast minicircle DNA (kDNA), the mini-exon gene and the small subunit ribosomal RNA (SSU-rRNA) gene of Leishmania were used, generating fragments of 400 bp, 780 bp and 603 bp, respectively. Infection by the parasite was found with the kDNA primer in 8.6% of the cases, with the mini-exon gene primer in 7.1% of the cases and with the SSU-rRNA gene primer in 5.3% of the cases. These data show the importance of polymerase chain reaction as a tool for investigating the molecular epidemiology of visceral leishmaniasis by estimating the risk of disease transmission in endemic areas, with the kDNA primer representing the most reliable marker for the parasite.
Resumo:
Re-infections with Trypanosoma cruzi are an aggravating factor for Chagas disease morbidity. The Colombian strain of T. cruzirepresents multiclonal populations formed by clonally propagating organisms with different tropisms and degrees of virulence. In the present study, the influence of successive inoculations with clones of the Colombian strain, exhibiting different degrees of virulence, on chronic myocarditis and the humoral and cellular immune responses (Col-C1 high virulence, Col-C8 medium virulence and Col-C5 low virulence) were demonstrated. Mice from three groups with a single infection were evaluated during the acute (14th-30th day) and chronic phases for 175 days. An immunofluorescence assay, ELISA and delayed type hypersensitivity (DTH) cutaneous test were also performed. Mice with a triple infection were studied on the 115th-175th days following first inoculation. The levels of IgM and IgG2a were higher in the animals with a triple infection. DTH showed a higher intensity in the inflammatory infiltrate based on the morphometric analysis during a 48 h period of the triple infection and at 24 h with a single infection. The histopathology of the heart demonstrated significant exacerbation of cardiac inflammatory lesions confirmed by the morphometric test. The humoral responses indicate a reaction to the triple infection, even with clones of the same strain.
Resumo:
This study evaluated the antifungal susceptibility profile and the production of potential virulence attributes in a clinical strain of Candida nivariensis for the first time in Brazil, as identified by sequencing the internal transcribed spacer (ITS)1-5.8S-ITS2 region and D1/D2 domains of the 28S of the rDNA. For comparative purposes, tests were also performed with reference strains. All strains presented low planktonic minimal inhibitory concentrations (PMICs) to amphotericin B (AMB), caspofungin (CAS), and voriconazole. However, our strain showed elevated planktonic MICs to posaconazole (POS) and itraconazole, in addition to fluconazole resistance. Adherence to inert surfaces was conducted onto glass and polystyrene. The biofilm formation and antifungal susceptibility on biofilm-growing cells were evaluated by crystal violet staining and a XTT reduction assay. All fungal strains were able to bind both tested surfaces and form biofilm, with a binding preference to polystyrene (p < 0.001). AMB promoted significant reductions (≈50%) in biofilm production by our C. nivariensis strain using both methodologies. This reduction was also observed for CAS and POS, but only in the XTT assay. All strains were excellent protease producers and moderate phytase producers, but lipases were not detected. This study reinforces the pathogenic potential of C. nivariensis and its possible resistance profile to the azolic drugs generally used for candidiasis management.
Resumo:
Objective To construct and validate markers of vulnerability of women to STDs/HIV, taking into consideration the importance of STDs/HIV. Method Methodological study carried out in three stages: 1) systematic review and identification of elements of vulnerability in the scientific production; 2) selection of elements of vulnerability, and development of markers; 3) establishment of the expert group and validation of the markers (content validity). Results Five markers were validated: no openness in the relationship to discuss aspects related to prevention of STDs/HIV; no perception of vulnerability to STDs/HIV; disregard of vulnerability to STDs/ HIV; not recognizing herself as the subject of sexual and reproductive rights; actions of health professionals that limit women’s access to prevention of STDs/HIV. Each marker contains three to eleven components. Conclusion The construction of such markers constituted an instrument, presented in another publication, which can contribute to support the identification of vulnerabilities of women in relation to STDs/HIV in the context of primary health care services. The markers constitute an important tool for the operationalization of the concept of vulnerability in primary health care and to promote inter/multidisciplinary and inter/multi-sectoral work processes.
Resumo:
The emergence of host-races within aphids may constitute an obstacle to pest management by means of plant resistance. There are examples of host-races within cereals aphids, but their occurrence in Rose Grain Aphid, Metopolophium dirhodum (Walker, 1849), has not been reported yet. In this work, RAPD markers were used to assess effects of the hosts and geographic distance on the genetic diversity of M. dirhodum lineages. Twenty-three clones were collected on oats and wheat in twelve localitites of southern Brazil. From twenty-seven primers tested, only four primers showed polymorphisms. Fourteen different genotypes were revealed by cluster analysis. Five genotypes were collected only on wheat; seven only on oats and two were collected in both hosts. Genetic and geographical distances among all clonal lineages were not correlated. Analysis of molecular variance showed that some molecular markers are not randomly distributed among clonal lineages collected on oats and on wheat. These results suggest the existence of host-races within M. dirhodum, which should be further investigated using a combination of ecological and genetic data.
Resumo:
Exon-primed intron-crossing (EPIC) markers as a tool for ant phylogeography. Due to their local abundance, diversity of adaptations and worldwide distribution, ants are a classic example of adaptive radiation. Despite this evolutionary and ecological importance, phylogeographical studies on ants have relied largely on mitochondrial markers. In this study we design and test exon-primed intron-crossing (EPIC) markers, which can be widely used to uncover ant intraspecific variation. Candidate markers were obtained through screening the available ant genomes for unlinked conserved exonic regions interspersed with introns. A subset of 15 markers was tested in vitro and showed successful amplification in several phylogenetically distant ant species. These markers represent an important step forward in ant phylogeography and population genetics, allowing for more extensive characterization of variation in ant nuclear DNA without the need to develop species-specific markers.
Resumo:
Distinct genetic structure in populations of Chrysoperla externa (Hagen) (Neuroptera, Chrysopidae) shown by genetic markers ISSR and COI gene. Green lacewings are generalist predators, and the species Chrysoperla externa presents a great potential for use in biological control of agricultural pests due to its high predation and reproduction capacities, as well as its easy mass rearing in the laboratory. The adaptive success of a species is related to genetic variability, so that population genetic studies are extremely important in order to maximize success of the biological control. Thus, the present study used nuclear (Inter Simple Sequence Repeat - ISSR) and mitochondrial (Cytochrome Oxidase I - COI) molecular markers to estimate the genetic variability of 12 populations in the São Paulo State, Brazil, as well as the genetic relationships between populations. High levels of genetic diversity were observed for both markers, and the highest values of genetic diversity appear associated with municipalities that have the greatest areas of native vegetation. There was high haplotype sharing, and there was no correlation between the markers and the geographic distribution of the populations. The AMOVA indicated absence of genetic structure for the COI gene, suggesting that the sampled areas formed a single population unit. However, the great genetic differentiation among populations showed by ISSR demonstrates that these have been under differentiation after their expansion or may also reflect distinct dispersal behavior between males and females.
Resumo:
Random amplified polymorphic DNA markers (RAPD) were used to estimate the variability of 14 genotypes of Brazilian wheat (Triticum aestivum L.), using a set of 50 random 10mer primers. A total of 256 reproducibly scorable DNA amplification products were obtained from 48 of the primers, 83% of which were polymorphic. Genetic distances among genotypes were calculated and a dendrogram and a principal coordinates analysis showing the genetic relationships among them were obtained. Despite the low variability found (average genetic distance of 27%), two groups of genotypes could be identified, which probably reflect how they were formed. Studies such as this one may be important in the planning and development of future improvement programs for this plant species.
Resumo:
Phenotypic virulence analysis was made on population of Pyricularia grisea isolates collected from 10 upland cultivars in three distinct rice breeding sites, with the objective of studying the degree of similarity in the phenotypic virulence among the isolates, the composition of races, and their virulence pattern. Sixteen races were identified based on the reaction type on eight standard international differentials, the predominant ones being IB9 and IB41. The virulence frequency was high on IAC47 and IAC165 among medium and early maturing cultivars, respectively. The frequency of isolates virulent was greater on upland rice cultivars (51.1%) than on irrigated rice cultivars (21.8%). Both virulent and avirulent isolates were present in the population of P. grisea to the known genes in the near isogenic lines. Of72test isolates, 94.4% were virulent for genes Pi3 and Pi4a. Thevirulence frequencies were relatively lower in decreasing order on Pi1, Pi4b and Pi2. Thecoefficient of similarity ranged from 0.28 to1.0 among the isolates pertaining to different races, while within the race IB9, it varied from 0.56 to1.0. Considering the coefficient of similarity of 0.81, 72% of isolates of race IB9 exhibited similar pattern of virulence.
Resumo:
Resistant varieties have been the preferred means to control Magnaporthe grisea, the causal organism of the rice blast disease. The objective of this study was to examine the degree of diversity of the pathogen in different rice growing regions of São Paulo State, Brazil. Blast samples collected from rice varieties in three different regions (Tremembé, Mococa and José Bonifácio) were analyzed for race structure employing the Japanese rice differentials. The highest degree of virulence diversity was observed in Tremembé with 22 different races in three different varieties. Furthermore, no resistance gene in the Japanese differentials was effective to all isolates of M. grisea from São Paulo State.