108 resultados para tropical forest succession


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moss diversity at various sites in the Tropical Atlantic Rainforest of southeastern Brazil is high, with 338 taxa distributed among 49 families and 129 genera. Comparisons of species richness in the Tropical Atlantic Rainforest in southeastern Brazil suggest that the moss flora is not uniform, and that lowland, montane, submontane, and upper montane Atlantic rainforests have very different moss floras. Montane Atlantic Rainforest has the largest number of exclusive species and the highest species richness, Sub-Montane Atlantic Rainforest has intermediate species richness, while the Lowland Atlantic Rainforest has fewer species. The high diversity of the Montane Atlantic Rainforest could be explained by the diversity of climatic, edaphic, and physiographic changes of the vegetation. Sematophyllaceae accounted for 19% of the taxa in lowland forest, Meteoriaceae for 10% of the taxa in montane forests, and Dicranaceae for 18% of the taxa in upper montane forests. Taxa with broad Neotropical distributions (40% of the total taxa) are important elements in all the forests, while taxa restricted to Brazil comprise the second most important element in upper montane and montane forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of disturbances on plant community structure in tropical forests have been widely investigated. However, a majority of these studies examined only woody species, principally trees, whereas the effects of disturbances on the whole assemblage of vascular plants remain largely unexplored. At the present study, all vascular plants < 5m tall were surveyed in four habitats: natural treefall gaps, burned forest, and their adjacent understorey. The burned area differed from the other habitats in terms of species composition. However, species richness and plant density did not differ between burned area and the adjacent understorey, which is in accordance to the succession model that predict a rapid recovery of species richness, but with a different species composition in areas under moderate disturbance. The treefall gaps and the two areas of understorey did not differ among themselves in terms of the number of individuals, number of species, nor in species composition. The absence of differences between the vegetation in treefall gaps and in understorey areas seems to be in agreement with the current idea that the species present in treefall gaps are directly related to the vegetation composition before gap formation. Only minimal differences were observed between the analyses that considered only tree species and those that considered all growth habits. This suggests that the same processes acting on tree species (the best studied group of plants in tropical forests) are also acting on the whole assemblage of vascular plants in these communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Above-ground litter production is one of the most accessible ways to estimate ecosystem productivity, nutrient fluxes and carbon transfers. Phenological patterns and climatic conditions are still not fully explained well for tropical and subtropical forests under less pronounced dry season and non-seasonal climates, as well as the interaction of these patterns with successional dynamics. Monthly litterfall was estimated for two years in a 9 to 10 year old secondary alluvial Atlantic Rain forest. Total litterfall was higher in the site with more developed vegetation (6.4 ± 1.2 ton ha-1 year-1; 95% confidence interval) as compared to the site with less developed vegetation (3.0 ± 1.0 ton ha-1 year-1). The monthly production of 11 litter fractions (eight fractions comprising the leaf litter of the seven main species of the community and other species; reproductive parts, twigs £ 2 cm diameter, and miscellaneous material) were correlated with meteorological variables making possible to identify three patterns of deposition. The main pattern, dominated by leaf-exchanging species, consisted of a cycle with the highest litterfall at the beginning of the rainy season, preceding by basically three months the peaks of the annual cycles of rainfall and temperatures. Other two patterns, dominated by brevi-deciduous species, peaked at the end of the rainy season and at the end of the non-rainy season. Tropical and subtropical dry forests that present the highest leaf fall gradually earlier than rain forests (as the studied sites) are possibly related to the start of senescence process. It seems that such process is triggered earlier by a more severe hydric stress, besides other factors linked to a minor physiological activity of plants that result in abscission.