131 resultados para thermionic specific detection
Resumo:
Garlic viruses often occur in mixed infections under field conditions. In this study, garlic samples collected in three geographical areas of Brazil were tested by Dot-ELISA for the detection of allexiviruses using monoclonal specific antibodies to detect Garlic virus A (GarV-A), Garlic virus B (GarV-B), Garlic virus C (GarV-C) and a polyclonal antiserum able to detect the three virus species mentioned plus Garlic virus D (GarV-D). The detected viruses were biologically isolated by successive passages through Chenopodium quinoa. Reverse Transcriptase Polimerase Chain Reaction (RT-PCR) was performed using primers designed from specific regions of the coat protein genes of Japanese allexiviruses available in the Genetic Bank of National Center of Biotechnology Information (NCBI). By these procedures, individual garlic virus genomes were isolated and sequenced. The nucleotide and amino acid sequence analysis and the one with serological data revealed the presence of three distinct allexiviruses GarV-C, GarV-D and a recently described allexivirus, named Garlic mite-borne filamentous virus (GarMbFV), in Brazil.
Resumo:
The objective of this work was to verify the existence of a lethal locus in a eucalyptus hybrid population, and to quantify the segregation distortion in the linkage group 3 of the Eucalyptus genome. A E. grandis x E. urophylla hybrid population, which segregates for rust resistance, was genotyped with 19 microsatellite markers belonging to linkage group 3 of the Eucalyptus genome. To quantify the segregation distortion, maximum likelihood (ML) models, specific to outbreeding populations, were used. These models consider the observed marker genotypes and the lethal locus viability as parameters. The ML solutions were obtained using the expectation‑maximization algorithm. A lethal locus in the linkage group 3 was verified and mapped, with high confidence, between the microssatellites EMBRA 189 e EMBRA 122. This lethal locus causes an intense gametic selection from the male side. Its map position is 25 cM from the locus which controls the rust resistance in this population.
Resumo:
A liquid chromatography method was developed and validated for the determination of phenobarbital in human plasma using phenytoin as internal standard. The drugs were extracted from plasma by liquid-liquid extraction and separated isocratically on a C12 analytical column, maintained at 35 ºC, with water:acetonitrile:methanol (58.8:15.2:26, v/v/v) as mobile phase, run at a flow rate of 1.2 mL/min with detection at 205 nm. The method was linear in the range of 0.1-4 μg/mL (r²=0.9999) and demonstrated acceptable results for the precision, accuracy and stability studies. The method was successfully applied for the bioequivalence study of two tablet formulations (test and reference) of phenobarbital 100 mg after single oral dose administration to healthy human volunteers.
Resumo:
Transcriptase reverse - polymerase chain reaction (RT-PCR) and dot blot hybridization with digoxigenin-labeled probes were applied for the universal detection of Tospovirus species. The virus species tested were Tomato spotted wilt virus, Tomato chlorotic spot virus, Groundnut ringspot virus, Chrysanthemum stem necrosis virus, Impatiens necrotic spot virus, Zucchini lethal chlorosis virus, Iris yellow spot virus. Primers for PCR amplification were designed to match conserved regions of the tospovirus genome. RT-PCR using distinct primer combinations was unable to simultaneously amplify all tospovirus species and consistently failed to detect ZLCV and IYSV in total RNA extracts. However, all tospovirus species were detected by RT-PCR when viral RNA was used as template. RNA-specific PCR products were used as probes for dot hybridization. This assay with a M probe (directed to the G1/G2 gene) detected at low stringency conditions all Tospovirus species, except IYSV. At low stringency conditions, the L non-radioactive probe detected the seven Tospovirus species in a single assay. This method for broad spectrum detection can be potentially employed in quarantine services for indexing in vitro germplasm.
Resumo:
An isolate of Grapevine virus B (GVB), obtained by indexing Vitis labrusca and V. vinifera grapevines on the indicator LN33, was transmitted mechanically to several Nicotiana species. The virus was partially purified from N. cavicola and the coat protein estimated at 23 kDa by SDS-PAGE. In negatively stained leaf extracts of experimentally inoculated N. cavicola and N. occidentalis, flexuous particles with cross banding were observed, predominantly measuring 750-770 x 12 nm, with a modal length of 760 nm. Decoration indicated a clear, positive reaction against AS-GVB. In DAS-ELISA, GVB was detected in N. cavicola and grapevine extracts, and Western blots showed homologous and cross reaction of GVB and GVA antisera with GVB coat protein. Using specific primers for GVB, a fragment of 594 bp, comprising the coat protein gene coding for 197 amino acids, was amplified by RT-PCR with viral RNA extracted from GVB-infected N. occidentalis. The nucleotide and the deduced amino acid sequences of the coat protein gene showed high identities with Italian and Japanese isolates of GVB.
Resumo:
A method to detect Apple stem grooving virus (ASGV) based on reverse transcription polymerase chain reaction (RT-PCR) was developed using primers ASGV4F-ASGV4R targeting the viral replicase gene, followed by a sandwich hybridisation, in microtiter plates, for colorimetric detection of the PCR products. The RT-PCR was performed with the Titan™ RT-PCR system, using AMV and diluted crude extracts of apple (Malus domestica) leaf or bark for the first strand synthesis and a mixture of Taq and PWO DNA polymerase for the PCR step. The RT-PCR products is hybridised with both a biotin-labelled capture probe linked to a streptavidin-coated microtiter plate and a digoxigenin (DIG)-labelled detection probe. The complex was detected with an anti-DIG conjugate labelled with alkaline phosphatase. When purified ASGV was added to extracts of plant tissue, as little as 400 fg of the virus was detected with this method. The assay with ASGV4F-ASGV4R primers specifically detected the virus in ASGV-infected apple trees from different origins, whereas no signal was observed with amplification products obtained with primers targeting the coat protein region of the ASGV genome or with primers specific for Apple chlorotic leaf spot virus (ACLSV) and Apple stem pitting virus (ASPV). The technique combines the power of PCR to increase the number of copies of the targeted gene, the specificity of DNA hybridization, and the ease of colorimetric detection and sample handling in microplates.
Resumo:
Leaf scald of barley caused by Rhynchosporium secalis is an important disease in Argentina. The fungus is a necrotrophic pathogen which survives in stubble, seeds and weeds. Isolation of R. secalis from seeds on artificial media usually has not been successful due to the slow growth rate of the pathogen and strong inhibition by contaminants. The objective in this work was to detect R. secalis in different genotypes of barley seeds in Argentina using the polymerase chain reaction (PCR)-based diagnostic assay. Four barley genotypes were tested in 2004: Quilmes Ayelén, Quilmes Alfa, Barke and Maltería Pampa 1004. The previously described RS8 and RS9 primers were used for the detection of R. secalis in barley seeds. A 264-bp single band was obtained for each cultivar showing the presence of R. secalis. The use of specific primers was efficient in the detection of R. secalis in barley seeds in Argentina and could be used for routine diagnosis, epidemiology and seed transmission studies. This is the first report on the detection of R. secalis in barley seeds in Argentina.
Resumo:
The soybean is important to the economy of Brazil, so the estimation of the planted area and the production with higher antecedence and reliability becomes essential. Techniques related to Remote Sensing may help to obtain this information at lower cost and less subjectivity in relation to traditional surveys. The aim of this study is to estimate the planted area with soybean culture in the crop of 2008/2009 in cities in the west of the state of Paraná, in Brazil, based on the spectral dynamics of the culture and through the use of the specific system of analysis for images of Landsat 5/TM satellite. The obtained results were satisfactory, because the classification supervised by Maximum Verisimilitude - MaxVer along with the techniques of the specific system of analysis for satellite images has allowed an estimate of soybean planted area (soybean mask), obtaining values of the metrics of Global Accuracy with an average of 79.05% and Kappa Index over 63.50% in all cities. The monitoring of a reference area was of great importance for determining the vegetative phase in which the culture is more different from the other targets, facilitating the choice of training samples (ROIs) and avoiding misclassifications.
Resumo:
ABSTRACT This study aimed to identify wavelengths based on leaf reflectance (400-1050 nm) to estimate white mold severity in common beans at different seasons. Two experiments were carried out, one during fall and another in winter. Partial Least Squares (PLS) regression was used to establish a set of wavelengths that better estimates the disease severity at a specific date. Therefore, observations were previously divided in two sub-groups. The first one (calibration) was used for model building and the second subgroup for model testing. Error measurements and correlation between measured and predicted values of disease severity index were employed to provide the best wavelengths in both seasons. The average indexes of each experiment were of 5.8% and 7.4%, which is considered low. Spectral bands ranged between blue and green, green and red, and red and infrared, being most sensitive for disease estimation. Beyond the transition ranges, other spectral regions also presented wavelengths with potential to determine the disease severity, such as red, green, and near infrared.
Resumo:
The immunodetection of diverse cell markers was evaluated in prostatic samples from bullocks, and bullocks showing epithelial hyperplasia-metaplasia, with oestrogen-induced changes, and in experimental samples from bullocks inoculated with dietylstilbestrol (DES). Antigen-retrieval procedures allowed the use of tissues that had been fixed in formalin for long periods. Three tissue markers were chosen for the study: cytokeratins 13 and 16, vimentin and desmin. Monoclonal antibody K8.12 (specific for cytokeratins 13 and 16) stained basal cells and hyperplastic-metaplastic epithelium; monoclonal antivimentin, and desmin, allowed the definition of fibromuscular changes.
Resumo:
A rapid conglutination test (RCT) with performance comparable to the indirect fluorescent antibody technique (IFAT) was developed to detect antibodies against Babesia bigemina (B. bigemina-RCT). The B. bigemina-RCT is a sensitive, specific, economical, and rapidly performed serological test suitable for field application or minimally equipped laboratories. This test had a sensitivity of 90.9%, and specificity of 97.6%, compared to IFAT, which showed for the same parameters respectively, 98.3% and 99.7%. The early detection of anti- B. bigemina immunoglobulins by RCT in experimental infections was nearly parallel to that of IFAT. Cross reactions were observed with sera from calves experimentally infected with Babesia bovis (1.8%) and with Anaplasma marginale (1.2%). RCT antigen prepared with non parasitized erythrocytes (negative antigen) showed 1.5%, 3.5% and 2.2% of positive reactions with sera from animals experimentally infected with B. bigemina, B. bovis and A. marginale. However, none of the sera from animals of endemic areas for babesia infection resulted in positive reactions with the negative antigen. Considering these results and shelf life over six months, the B. bigemina-RCT could be used for epidemiological surveys and evaluation of control measures against this species of Babesia.
Resumo:
An indirect enzyme-linked immunosorbent assay was developed to detect antigen-specific secretory IgA antibodies to Campylobacter fetus subsp. venerealis in bovine vaginal mucus with a protein extract of the Campylobacter fetus subsp. venerealis by the acid glycine extraction method. Mean optical density measurement (λ=450 nm) was 0.143±0.9. The most immunoreactive protein bands of the Campylobacter fetus subsp. venerealis or Campylobacter fetus subsp. fetus recognized by IgA in immunoblotting, using bovine vaginal mucus samples, migrate at 42.6 kDa. The protein that migrates at 93 kDa was recognized exclusively for C. fetus subsp. venerealis. A positive vaginal mucus sample of a cow from negative herd recognized antigens of C. jejuni subsp. jejuni e C. fetus subsp. fetus.
Resumo:
Conidiobolomycosis is a granulomatous disease caused by the fungus Conidiobolus spp. in humans and animals. Traditional technique for diagnosis of the disease is isolation of the agent associated with the presence of typical clinical signs and pathological conditions. The aim of this study was to describe the development of a specific polymerase chain reaction (PCR) test for Conidiobolus lamprauges to detect the fungus in clinical samples. Samples from suspected animals were collected and submitted to isolation, histopathological analysis and amplification by PCR. DNA from tissues was subjected to PCR with fungi universal primers 18S rDNA gene, and specific primers were designed based on the same gene in C. lamprauges that generated products of about 540 bp and 222 bp respectively. The culture was positive in 26.6% of clinical samples. The PCR technique for C. lamprauges showed amplification of DNA from fresh tissues (80%) and paraffin sections (44.4%). In conclusion, the PCR technique described here demonstrated a high sensitivity and specificity for detection of fungal DNA in tissue samples, providing a tool for the rapid diagnosis of C. lamprauges.
Resumo:
Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) are the mycoplasma infections of most concern for commercial poultry industry. MG infection is commonly designated as chronic respiratory disease (CRD) of chickens and infections sinusitis of turkeys. MS causes sub clinical upper respiratory infection and tenosynovitis or bursitis in chickens and turkeys. The multiplex PCR was standardized to detect simultaneously the MS, MG field strains and MG F-vaccine strain specific. The generic PCR for detection of any species of Mollicutes Class was performed and compared to the multiplex PCR and to PCR using species-specific primers. A total of 129 avian tracheal swabs were collected from broiler-breeders, layer hens and broilers in seven different farms and were examined by multiplex PCR methods. The system (multiplex PCR) demonstrated to be very rapid, sensitive, and specific. Therefore, the results showed a high prevalence of MS in the flocks examined (27.9%), and indicate that the MS is a recurrent pathogen in Brazilian commercial poultry flocks.
Resumo:
In Rubiaceae, anthraquinones and naphthoquinones are secondary metabolites characteristic of the subfamily Rubioideae, in which Rudgea jasminoides is included. Thin-layer chromatography using specific solvent systems and spray reagents indicated the presence of anthraquinones constitutively produced by cell suspension cultures of R. jasminoides. GC/MS analysis detected 1,4-naphthohydroquinone as a product of biosynthesis only after elicitation of the cells with yeast extract (Saccharomyces cerevisiae). The latter compound is probably a phytoalexin produced by suspension cultures of R. jasminoides.