124 resultados para soil leaching column chromatography
Resumo:
INTRODUCTION: Peak and trough serum concentrations of vancomycin were determined in term newborn infants with confirmed or suspected Staphylococcus sp sepsis by high performance liquid chromatography and flourescence polarization immunoassay. OBJECTIVE: To statistically compare the results of the high performance liquid chromatography and flourescence polarization immunoassay techniques for measuring serum vancomycin concentrations. METHODS: Eighteen peak and 20 trough serum samples were assayed for vancomycin concentrations using high performance liquid chromatography and flourescence polarization immunoassay from October 1995 to October 1997. RESULTS: The linear correlation coefficients for high performance liquid chromatography and flourescence polarization immunoassay were 0.27 (peak, P = 0.110) and 0.26 (trough, P = 0.1045) respectively, which were not statistically significant. CONCLUSION: There was wide variation in serum vancomycin concentrations determined by high performance liquid chromatography as compared with those determined by flourescence polarization immunoassay. There was no recognizable pattern in the variability; in an apparently random fashion, the high performance liquid chromatography measurement was sometimes substantially higher than the flourescence polarization immunoassay measurement, and at other times it was substantially lower.
Resumo:
Soil conditions under pasture were examined in a range of sites representing the sequence of conversion of forest to pasture at two locations in the vicinity of Ilha de Maracã, Roraima. Comparisons were made with adjacent savana. Soil bulk densities shown to increase after forest clearance and soil chemical data indicate that the initial beneficial effects on nutrient supply of burning forest debris are rather short-lived. Very low levels of available phosphorus prevail in areas of savanna and cultivated pasture of all ages. Variations in the status of older cultivated pastures are mainly attributable to different grazing levelt.
Resumo:
The intensity of construction of foraging access holes by two leaf-litter feeding, soil- inhabiting termite species, Syntermes molestus and Syntermes spinosus, in a Central Amazonian rain forest, was observed on consecutive nights for two weeks. Between 11 and 48 nest entrances per m2 were counted. Interaction between the two species was intense; some entrance holes were overtaken by the larger species during the observations; however, both species coexist in the area. A calculated minimum of 35 entrances/m2 is built every year by both species, emphasizing the importance of soil-burrowing termites for soil structure, aeration and water regime.
Resumo:
Long term applications of leguminous green mulch could increase mineralizable nitrogen (N) beneath cupuaçu trees produced on the infertile acidic Ultisols and Oxisols of the Amazon Basin. However, low quality standing cupuaçu litter could interfere with green mulch N release and soil N mineralization. This study compared mineral N, total N, and microbial biomass N beneath cupuaçu trees grown in two different agroforestry systems, north of Manaus, Brazil, following seven years of different green mulch application rates. To test for net interactions between green mulch and cupuaçu litter, dried gliricidia and inga leaves were mixed with senescent cupuaçu leaves, surface applied to an Oxisol soil, and incubated in a greenhouse for 162 days. Leaf decomposition, N release and soil N mineralization were periodically measured in the mixed species litter treatments and compared to single species applications. The effect of legume biomass and cupuaçu litter on soil mineral N was additive implying that recommendations for green mulch applications to cupuaçu trees can be based on N dynamics of individual green mulch species. Results demonstrated that residue quality, not quantity, was the dominant factor affecting the rate of N release from leaves and soil N mineralization in a controlled environment. In the field, complex N cycling and other factors, including soil fauna, roots, and microclimatic effects, had a stronger influence on available soil N than residue quality.
Resumo:
Soil respiration plays a significant role in the carbon cycle of Amazonian rainforests. Measurements of soil respiration have only been carried out in few places in the Amazon. This study investigated the effects of the method of ring insertion in the soil as well as of rainfall and spatial distribution on CO2 emission in the central Amazon region. The ring insertion effect increased the soil emission about 13-20% for sandy and loamy soils during the firsts 4-7 hours, respectively. After rainfall events below 2 mm, the soil respiration did not change, but for rainfall greater than 3 mm, after 2 hours there was a decrease in soil temperature and respiration of about 10-34% for the loamy and sand soils, with emissions returning to normal after around 15-18 hours. The size of the measurement areas and the spatial distribution of soil respiration were better estimated using the Shuttle Radar Topographic Mission (SRTM) data. The Campina reserve is a mosaic of bare soil, stunted heath forest-SHF and tall heath forest-THF. The estimated total average CO2 emissions from the area was 3.08±0.8 µmol CO2 m-2 s-1. The Cuieiras reserve is another mosaic of plateau, slope, Campinarana and riparian forests and the total average emission from the area was 3.82±0.76 µmol CO2 m-2 s-1. We also found that the main control factor of the soil respiration was soil temperature, with 90% explained by regression analysis. Automated soil respiration datasets are a good tool to improve the technique and increase the reliability of measurements to allow a better understanding of all possible factors driven by soil respiration processes.
Resumo:
Fields of murundus (FM) are wetlands that provide numerous ecosystem services. The objectives of this study were to evaluate the chemical [organic carbon (OC), P, K+, Ca2+, Mg2+, Al3+ and H+Al] and physical [texture and bulk density (Bd)] soil attributes and calculate the organic matter (OM) and nutrient stock (P, Ca, Mg, and K) in soils of FM located in the Guapore River basin in Mato Grosso. Thirty-six sampling points were selected, and soil samples were collected from two environments: the murundu and plain area surrounding (PAS). At each sampling point, mini trenches of 0.5 × 0.5 × 0.4 m were opened and disturbed and undisturbed soil samples were collected at depths of 0-0.1, 0.1-0.2, and 0.2-0.4 m. In the Principal Component Analysis the variables H+Al (49%) and OM (4%) were associated with the F1 component and sand content (47%) with the F2 component. The FM had lower pH values and higher concentrations of K+, P, and H+Al than PAS at all depths (p < 0.05). Additionally, FM stocked up to 433, 360, 205, and 11 kg ha-1 of Ca, Mg, K, and P, respectively, for up to a depth of 0.2 m. The murundu stored two times more K and three times more P than that in the PAS. Our results show that the FM has high sand content and Bd greater than 1.5 Mg m-3, high acidity, low OC content, and low nutrient concentrations. Thus, special care must be taken to preserve FM such that human intervention does not trigger environmental imbalances.
Resumo:
ABSTRACTEndophytic fungi are fungi that colonize internal tissues of plants. There are few studies of compounds isolated from endophytic fungi of Amazon plants. Thus, the aim this study was the isolation and structural identification of sitosterol (1), stigmasterol (2), sitostenone (3), squalene (4), ergosterol (5) and ergosterol peroxide (6) from fungus Colletotrichum gloeosporioidesisolated as endophytic from Virola michelli, a typical Amazon plant, used in folk medicine against skin infection. Compounds were isolated by chromatography column on silica and identified by 1H and 13C NMR and MS. The presence of phytosterols in fungi is rare and this is the first report of the isolation of the phytosterols sitosterol, stigmasterol and sitostenone from the genus Colletotrichum.
Resumo:
In this paper it is studied the action of vinasse as compared to mineral fertilizers. Beans, corn, cotton and sesame were cultivated in randomized blocks receiving the following treatments: A = mineral fertilizers (N, P, K); V = vinasse at the rate of 1,000,000 liters per Ha; AV = mineral fertilizers + vinasse; T = control. Statistical analysis of the experiments has consistently revealed the superiority of vinasse either combined or not with the mineral fertilizers over the remaining treatments. There was no significant difference between V and AV which shows the surprizing role of vinasse when applied to light soils such as those employed in the present experiments. By employing 1,000,000 liters of vinasse to the hectare the following amounts of nutrientes were applied to the crops in this experiment: 470 Kg of nitrogen 50 Kg of P2O5 and 3,100 Kg of K2O corresponds to 3,133 Kg of Chilean nitrate/ha 250 Kg of superphosphate and 5,160 Kg of muriate of potash Hence one cannot say that the action of vinasse is of a purely physical nature. In our opinion its outstanding action is due to: 1st raise in the pH value of the soil; 2nd addition of a tremendous amount of plant nutrients; 3rd supplying organic matter in a very finely divided state with all its benefical effects in soil structure, water holding capacity, adsorption of nutrients to prevent leaching, etc. A rotation experiment is now being carried out to study the residual effect of vinasse.
Resumo:
The organic and inorganic forms of soil nitrogen and how they participate in the process of fixation, immobilization and mineralization of ammonium in soils were evaluated, after different periods of incubaton, utilizing two soils, a Lithic Haplustoll and a Typic Eutrorthox. The results obtained permit to suggest that : 1) The method for determination of the ammonium fixing capacity based on the extraction with 2N KC1, is considered to be subject to interferences of other soil fractions capable of retaining ammonium. 2) The increase in exchangeable ammonium content is related to the decrease in amino acids and hydrolyzable ammonium. 3) The immobilization and mineralization processes are still held under mil microbial. The forms more affected by this condition are amino acids and hydrolyzable ammonium.
Resumo:
The present work deal t wi th an experiment under field conditions and a laboratory test of soil incubation the objectives were as follows: a. to study effects on soybean grain product ion and leaf composition of increasing doses of potassium chloride applied into the soil through two methods of distribution; b. to observe chemical modifications in the soils incubated with increasing doses of potassium chloride; and, c. to correlate field effects with chemical alterations observed in the incubation test, The field experiment was carried out in a Red Latosol (Haplustox) with soybean cultivar UFV - 1. Potassium chloride was distributed through two methods: banded (5 cm below and 5 cm aside of the seed line) and broadcasted and plowed-down. Doses used were: 0; 50; 100 and 200 kg/ha of K2O. Foliar samples were taken at flowering stage. Incubation test were made in plastic bags with 2 kg of air dried fine soil, taken from the arable layer of the field experiment, with the following doses of KC1 p,a. : 0; 50; 100; 200; 400; 800; 1,600; 3.200; 6,400 and 12,800 kg/ha of K(2)0. In the conditions observed during the present work, results allowed the following conclusions: A response by soybean grain production for doses of potassium chloride, applied in both ways, banded or broadcasted, was not observed. Leaf analysis did not show treatment influence over the leaf contents for N, P, K, Ca, Mg, and CI, Potassium chloride salinity effects in both methods of distribution for all the tested closes were not observed.
Resumo:
As a rule, soils of the subtropical and tropical regions, in which rainfall is not limiting, are acidic, and low in phosphorus, and, to a less extent, in other macro and micronutrients as well, such a sulfur, boron and zinc. The establishment of a permanent agricultural prac. tice therefore, demands relatively high usage of liming and phosphatic fertilization, to begin with. Several approaches, not mutually exclusive, could be used in order to increase the efficiency of utilization of soil and fertilizer phosphorus so that, goal of diminishing costs of production is reached. The use of liming materials bringing up pH to 6.0-6.5 causes the conversion of iron and aluminum phosphates to more available calcium phosphates; on the other hand, by raising calcium saturation in the exchange complex, it improves the development and operation if the root system which allows c or a higher utilization of all soil nutrients, including phosphorus, and helps of stand water deficits which may occur. The role of mycorrhizal fungi should be considered as a way of increasing soil and fertilizer P utilization, as well as the limitations thereof. Screening of and breeding for varieties with higher efficiency of uptake and utilization of soil and fertilizer phosphorus leads to a reduction in cost of inputs and to higher benefit/cost ratios. Corrective fertilization using ground rock phosphate helps to saturate the fixation power of the soil thereby reducing, as a consequence, the need for phosphorus in the maintenance fertilization. Maintenance fertilization, in which soluble phos-phatic sources are used, could be improved by several means whose performance has been proved: limimg, granula tion, placement, use of magnesium salts. Last, cost of phosphate fertilization could be further reduced, without impairing yields, through impairing yields, through changes in technology designed to obtain products better adapted to local conditions and to the availability or raw materials and energy sources.
Resumo:
Soil invertebrate distribution in Araucaria forest, grassland and edge habitats was studied in both disturbed and undisturbed areas in southern Brazil. Mean-density and taxa compositions were verified. Invertebrate densities differed between grassland and the other two habitats in the undisturbed area but not across the disturbed one. At the disturbed area taxa differed between the grassland and the other two habitats. The undisturbed area, on the other hand, presented taxa differences only between the grassland and the forest habitats. Acari, Arachnida and Collembola were the most sensitive taxa for detecting differences across habitats in both areas. At the disturbed area, these taxa presented densities lowering from the forest to the grassland. At the undisturbed area the same taxa increased from the forest to the grassland. Coleoptera and Formicidae (Insecta) presented no difference between habitats at the studied taxonomic level.