128 resultados para skeletal morphology
Resumo:
The morphology of the skin of the mutant hairless USP mouse was studied by histological, histochemical and immunohistochemical methods and compared to the skin of BALB/c mice. Representative sections of the dorsal skin from mice of both strains aged 18 days, and 1, 3, 6, and 8 months were studied. Sections stained with hematoxylin and eosin showed cystic formations called utricles and dermal cysts in the dermis that increased in size and number during growth. Skin thickness increased significantly at 8 months. Sections stained with picrosirius and examined with polarized light, displayed different colors, suggesting different thicknesses of dermal collagen fibers (probably types I and III). Weigert, Verhoeff and resorcin-fuchsin stains revealed fibers of the elastic system. The PAS and Alcian blue methods revealed neutral and acid glycosaminoglycans in the skin ground substance of both mouse strains. Immunohistochemical staining for fibronectin and laminin did not show differences between the mutant and BALB/c mice. Mast cells stained by the Gomori method and macrophages positive for HAM 56 antibodies were observed in both mouse strains. Except for the presence of enlarged cysts in the hairless strain, no qualitative differences were found during development of the skin of BALB/c and the mutant hairless mice.
Resumo:
Size changes in muscle fibers of subjects with chronic heart disease (CHD) have been reported, although a consensus has not been achieved. The aims of the present study were to investigate a possible association between CHD and fiber size changes in the brachial biceps compared to subjects without heart disease. Forty-six muscle samples were obtained in autopsies of individuals (13 to 84 years) without neuromuscular disorders, 19 (10 males and 9 females) with, and 27 (14 males and 13 females) without CHD. In all cases muscle sections were stained with hematoxylin and eosin and processed for the visualization of myofibrillar ATPase activity. The lesser diameter of type 1 and type 2 fibers was obtained tracing their outlines (at least 150 fibers of each type per sample) onto an image analyzer connected to a computer. The results were analyzed statistically comparing males and females with and without CHD. Type 1 fiber mean lesser diameters were 51.51 and 54.52 µm in males (normal range 34-71 µm) and 45.65 and 55.42 µm in females (normal range 34-65 µm) without and with CHD, respectively; type 2 fibers measured 54.31, 58.23, 41.15, and 49.57 µm, respectively (normal range 36-79 µm for males and 32-59 µm for females). No significant difference in fiber size was detected in 24 males with and without CHD, while in 22 females there was a significant increase in size in those with cardiomyopathy. We concluded that CHD does not determine significant changes in fiber size. However, in females, there is some hypertrophy which, despite within normal range, may reflect morphologic heterogeneity of the sample, or the daily life activities in the upper limbs as a compensatory mechanism to fatigability that affect predominantly the lower limbs in subjects with CHD.
Resumo:
The present study analyzes the ectopic development of the rat skeletal muscle originated from transplanted satellite cells. Satellite cells (10(6) cells) obtained from hindlimb muscles of newborn female 2BAW Wistar rats were injected subcutaneously into the dorsal area of adult male rats. After 3, 7, and 14 days, the transplanted tissues (N = 4-5) were processed for histochemical analysis of peripheral nerves, inactive X-chromosome and acetylcholinesterase. Nicotinic acetylcholine receptors (nAChRs) were also labeled with tetramethylrhodamine-labeled alpha-bungarotoxin. The development of ectopic muscles was successful in 86% of the implantation sites. By day 3, the transplanted cells were organized as multinucleated fibers containing multiple clusters of nAChRs (N = 2-4), resembling those from non-innervated cultured skeletal muscle fibers. After 7 days, the transplanted cells appeared as a highly vascularized tissue formed by bundles of fibers containing peripheral nuclei. The presence of X chromatin body indicated that subcutaneously developed fibers originated from female donor satellite cells. Differently from the extensor digitorum longus muscle of adult male rat (87.9 ± 1.0 µm; N = 213), the diameter of ectopic fibers (59.1 µm; N = 213) did not obey a Gaussian distribution and had a higher coefficient of variation. After 7 and 14 days, the organization of the nAChR clusters was similar to that of clusters from adult innervated extensor digitorum longus muscle. These findings indicate the histocompatibility of rats from 2BAW colony and that satellite cells transplanted into the subcutaneous space of adult animals are able to develop and fuse to form differentiated skeletal muscle fibers.
Resumo:
We investigated the relationship between fetal body weight at term (pregnancy day 21) and the extent of ossification of sternum, metacarpus, metatarsus, phalanges (proximal, medial and distal) of fore- and hindlimbs and cervical and coccygeal vertebrae in Wistar rats. The relationships between fetal body weight and sex, intrauterine position, uterine horn, horn size, and litter size were determined using historical control data (7594 fetuses; 769 litters) of untreated rats. Relationships between body weight and degree of ossification were examined in a subset of 1484 historical control fetuses (154 litters) which were subsequently cleared and stained with alizarin red S. Fetal weight was independent of horn size, uterine horn side (left or right) or intrauterine position. Males were heavier than females and fetal weight decreased with increasing litter size. Evaluation of the skeleton showed that ossification of sternum, metacarpus and metatarsus was extensively complete and independent of fetal weight on pregnancy day 21. In contrast, the extent of ossification of fore- and hindlimb phalanges and of cervical and sacrococcygeal vertebrae was dependent on fetal body weight. The strongest correlation between body weight and degree of ossification was found for hindlimb, medial and proximal phalanges. Our data therefore suggest that, in full-term rat fetuses (day 21), reduced ossification of sternum, metacarpus and metatarsus results from a localized impairment of bone calcification (i.e., a malformation or variation) rather than from general growth retardation and that ossification of hindlimb (medial and proximal) phalanges is a good indicator of treatment-induced fetal growth retardation.
Resumo:
Desmin is the main intermediate filament (IF) protein of muscle cells. In skeletal muscle, desmin IFs form a scaffold that interconnects the entire contractile apparatus with the subsarcolemmal cytoskeleton and cytoplasmic organelles. The interaction between desmin and the sarcolemma is mediated by a number of membrane proteins, many of which are Ca2+-sensitive. In the present study, we analyzed the effects of the Ca2+ chelator EGTA (1.75 mM) on the expression and distribution of desmin in C2C12 myoblasts grown in culture. We used indirect immunofluorescence microscopy and reverse transcription polymerase chain reaction (RT-PCR) to analyze desmin distribution and expression in C2C12 cells grown in the presence or absence of EGTA. Control C2C12 myoblasts showed a well-spread morphology after a few hours in culture and became bipolar when grown for 24 h in the presence of EGTA. Control C2C12 cells showed a dense network of desmin from the perinuclear region to the cell periphery, whereas EGTA-treated cells showed desmin aggregates in the cytoplasm. RT-PCR analysis revealed a down-regulation of desmin expression in EGTA-treated C2C12 cells compared to untreated cells. The present results suggest that extracellular Ca2+ availability plays a role in the regulation of desmin expression and in the spatial distribution of desmin IFs in myoblasts, and is involved in the generation and maintenance of myoblast cell shape.
Resumo:
Cyclosporin-A (CsA) is an immunosuppressive drug that acts as an inhibitor of calcineurin, a calcium phosphatase that has been suggested to play a role in skeletal muscle hypertrophy. The aim of the present study was to determine the effect of CsA administration (25 mg kg-1 day-1) on skeletal muscle mass and phenotype during disuse and recovery. Male Wistar rats received vehicle (N = 8) or CsA (N = 8) during hind limb immobilization (N = 8) and recovery (N = 8). Muscle weight (dry/wet) and cross-sectional area were evaluated to verify the effect of CsA treatment on muscle mass. Muscle phenotype was assessed by histochemistry of myosin ATPase. CsA administration during immobilization and recovery did not change muscle/body weight ratio in the soleus (SOL) or plantaris (PL). Regarding muscle phenotype, we observed a consistent slow-to-fast shift in all experimental groups (immobilized only, receiving CsA only, and immobilized receiving CsA) as compared to control in both SOL and PL (P < 0.05). During recovery, no difference was observed in SOL or PL fiber type composition between the experimental recovered group and recovered group receiving CsA compared to their respective controls. Considering the muscle/body weight ratio, CsA administration does not maximize muscle mass loss induced by immobilization. Our results also indicate that CsA fails to block skeletal muscle regrowth after disuse. The present data suggest that calcineurin inhibition by CsA modulates muscle phenotype rather than muscle mass.
Resumo:
Diets rich in saturated fatty acids are one of the most important causes of atherosclerosis in men, and have been replaced with diets rich in unsaturated fatty acids (UFA) for the prevention of this disorder. However, the effect of UFA on myocardial performance, metabolism and morphology has not been completely characterized. The objective of the present investigation was to evaluate the effects of a UFA-rich diet on cardiac muscle function, oxidative stress, and morphology. Sixty-day-old male Wistar rats were fed a control (N = 8) or a UFA-rich diet (N = 8) for 60 days. Myocardial performance was studied in isolated papillary muscle by isometric and isotonic contractions under basal conditions after calcium chloride (5.2 mM) and ß-adrenergic stimulation with 1.0 µM isoproterenol. Fragments of the left ventricle free wall were used to study oxidative stress and were analyzed by light microscopy, and the myocardial ultrastructure was examined in left ventricle papillary muscle. After 60 days the UFA-rich diet did not change myocardial function. However, it caused high lipid hydroperoxide (176 ± 5 vs 158 ± 5, P < 0.0005) and low catalase (7 ± 1 vs 9 ± 1, P < 0.005) and superoxide-dismutase (18 ± 2 vs 27 ± 5, P < 0.005) levels, and discrete morphological changes in UFA-rich diet hearts such as lipid deposits and mitochondrial membrane alterations compared to control rats. These data show that a UFA-rich diet caused myocardial oxidative stress and mild structural alterations, but did not change mechanical function.
Resumo:
Exercise-induced vessel changes modulate arterial pressure (AP) in male spontaneously hypertensive rats (SHR). Vascular endothelial growth factor (VEGF) is important for angiogenesis of skeletal muscle. The present study evaluated the time course of VEGF and angiogenesis after short- and long-term exercise training of female SHR and Wistar Kyoto (WKY) rats, 8-9 weeks (200-250 g). Rats were allocated to daily training or remained sedentary for 3 days (N = 23) or 13 weeks (N = 23). After training, the carotid artery was catheterized for AP measurements. Locomotor (tibialis anterior and gracilis) and non-locomotor skeletal muscles (temporalis) were harvested and prepared for histologic and protein expression analyses. Training increased treadmill performance by all groups (SHR = 28%, WKY = 64%, 3 days) and (SHR = 141%, WKY = 122%, 13 weeks). SHR had higher values of AP than WKY (174 ± 4 vs 111 ± 2 mmHg) that were not altered by training. Three days of running increased VEGF expression (SHR = 28%, WKY = 36%) simultaneously with an increase in capillary-to-fiber ratio in gracilis muscle (SHR = 19%, WKY = 15%). In contrast, 13 weeks of training increased gracilis capillary-to-fiber ratio (SHR = 18%, WKY = 19%), without simultaneous changes in VEGF expression. Training did not change VEGF expression and capillarity of temporalis muscle. We conclude that training stimulates time- and tissue-dependent VEGF protein expression, independent of pressure levels. VEGF triggers angiogenesis in locomotor skeletal muscle shortly after the exercise starts, but is not involved in the maintenance of capillarity after long-term exercise in female rats.
Resumo:
The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase). Data were analyzed statistically by the mixed effects linear model (P < 0.05). Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001). In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001). In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009). We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.
Resumo:
Mammalian cells contain several proteolytic systems to carry out the degradative processes and complex regulatory mechanisms to prevent excessive protein breakdown. Among these systems, the Ca2+-activated proteolytic system involves the cysteine proteases denoted calpains, and their inhibitor, calpastatin. Despite the rapid progress in molecular research on calpains and calpastatin, the physiological role and regulatory mechanisms of these proteins remain obscure. Interest in the adrenergic effect on Ca2+-dependent proteolysis has been stimulated by the finding that the administration of β2-agonists induces muscle hypertrophy and prevents the loss of muscle mass in a variety of pathologic conditions in which calpains are activated. This review summarizes evidence indicating that the sympathetic nervous system produces anabolic, protein-sparing effects on skeletal muscle protein metabolism. Studies are reviewed, which indicate that epinephrine secreted by the adrenal medulla and norepinephrine released from adrenergic terminals have inhibitory effects on Ca2+-dependent protein degradation, mainly in oxidative muscles, by increasing calpastatin levels. Evidence is also presented that this antiproteolytic effect, which occurs under both basal conditions and in stress situations, seems to be mediated by β2- and β3-adrenoceptors and cAMP-dependent pathways. The understanding of the precise mechanisms by which catecholamines promote muscle anabolic effects may have therapeutic value for the treatment of muscle-wasting conditions and may enhance muscle growth in farm species for economic and nutritional purposes.
Resumo:
We evaluated the effects of chronic allergic airway inflammation and of treadmill training (12 weeks) of low and moderate intensity on muscle fiber cross-sectional area and mRNA levels of atrogin-1 and MuRF1 in the mouse tibialis anterior muscle. Six 4-month-old male BALB/c mice (28.5 ± 0.8 g) per group were examined: 1) control, non-sensitized and non-trained (C); 2) ovalbumin sensitized (OA, 20 µg per mouse); 3) non-sensitized and trained at 50% maximum speed _ low intensity (PT50%); 4) non-sensitized and trained at 75% maximum speed _ moderate intensity (PT75%); 5) OA-sensitized and trained at 50% (OA+PT50%), 6) OA-sensitized and trained at 75% (OA+PT75%). There was no difference in muscle fiber cross-sectional area among groups and no difference in atrogin-1 and MuRF1 expression between C and OA groups. All exercised groups showed significantly decreased expression of atrogin-1 compared to C (1.01 ± 0.2-fold): PT50% = 0.71 ± 0.12-fold; OA+PT50% = 0.74 ± 0.03-fold; PT75% = 0.71 ± 0.09-fold; OA+PT75% = 0.74 ± 0.09-fold. Similarly significant results were obtained regarding MuRF1 gene expression compared to C (1.01 ± 0.23-fold): PT50% = 0.53 ± 0.20-fold; OA+PT50% = 0.55 ± 0.11-fold; PT75% = 0.35 ± 0.15-fold; OA+PT75% = 0.37 ± 0.08-fold. A short period of OA did not induce skeletal muscle atrophy in the mouse tibialis anterior muscle and aerobic training at low and moderate intensity negatively regulates the atrophy pathway in skeletal muscle of healthy mice or mice with allergic lung inflammation.
Resumo:
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix by promoting the formation of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Ion transporters control the availability of phosphate and calcium needed for HA deposition. The lipidic microenvironment in which MV-associated enzymes and transporters function plays a crucial physiological role and must be taken into account when attempting to elucidate their interplay during the initiation of biomineralization. In this short mini-review, we discuss the potential use of proteoliposome systems as chondrocyte- and osteoblast-derived MVs biomimetics, as a means of reconstituting a phospholipid microenvironment in a manner that recapitulates the native functional MV microenvironment. Such a system can be used to elucidate the interplay of MV enzymes during catalysis of biomineralization substrates and in modulating in vitro calcification. As such, the enzymatic defects associated with disease-causing mutations in MV enzymes could be studied in an artificial vesicular environment that better mimics their in vivo biological milieu. These artificial systems could also be used for the screening of small molecule compounds able to modulate the activity of MV enzymes for potential therapeutic uses. Such a nanovesicular system could also prove useful for the repair/treatment of craniofacial and other skeletal defects and to facilitate the mineralization of titanium-based tooth implants.
Resumo:
Our objective was to determine lipid peroxidation and nuclear factor-κB (NF-κB) activation in skeletal muscle and the plasma cytokine profile following maximum progressive swimming. Adult male Swiss mice (N = 15) adapted to the aquatic environment were randomly divided into three groups: immediately after exercise (EX1), 3 h after exercise (EX2) and control. Animals from the exercising groups swam until exhaustion, with an initial workload of 2% of body mass attached to the tail. Control mice did not perform any exercise but were kept immersed in water for 20 min. Maximum swimming led to reactive oxygen species (ROS) generation in skeletal muscle, as indicated by increased thiobarbituric acid reactive species (TBARS) levels (4062.67 ±1487.10 vs 19,072.48 ± 8738.16 nmol malondialdehyde (MDA)/mg protein, control vs EX1). Exercise also promoted NF-κB activation in soleus muscle. Cytokine secretion following exercise was marked by increased plasma interleukin-6 (IL-6) levels 3 h post-exercise (P < 0.05). Interleukin-10 (IL-10) levels were reduced following exercise and remained reduced 3 h post-exercise (P < 0.05). Plasma levels of other cytokines investigated, monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and interleukin-12 (IL-12), were not altered by exercise. The present findings showed that maximum swimming, as well as other exercise models, led to lipid peroxidation and NF-κB activation in skeletal muscle and increased plasma IL-6 levels. The plasma cytokine response was also marked by reduced IL-10 levels. These results were attributed to exercise type and intensity.
Resumo:
Heart failure is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. Chronic neurohumoral excitation (i.e., sympathetic hyperactivity) has been considered to be a hallmark of heart failure and is associated with a poor prognosis, cardiac dysfunction and remodeling, and skeletal myopathy. Aerobic exercise training is efficient in counteracting sympathetic hyperactivity and its toxic effects on cardiac and skeletal muscles. In this review, we describe the effects of aerobic exercise training on sympathetic hyperactivity, skeletal myopathy, as well as cardiac function and remodeling in human and animal heart failure. We also discuss the mechanisms underlying the effects of aerobic exercise training.
Resumo:
Abstract The reduction of skeletal muscle loss in pathological states, such as muscle disuse, has considerable effects in terms of rehabilitation and quality of life. Since there is no currently effective and safe treatment available for skeletal muscle atrophy, the search for new alternatives is necessary. Resistance exercise (RE) seems to be an important tool in the treatment of disuse-induced skeletal muscle atrophy by promoting positive functional (strength and power) and structural (hypertrophy and phenotypic changes) adaptive responses. Human and animal studies using different types of resistance exercise (flywheel, vascular occlusion, dynamic, isometric, and eccentric) have obtained results of great importance. However, since RE is a complex phenomenon, lack of strict control of its variables (volume, frequency, intensity, muscle action, rest intervals) limits the interpretation of the impact of the manipulation on skeletal muscle remodeling and function under disuse. The aim of this review is to critically describe the functional and morphological role of resistance exercise in disuse-induced skeletal muscle atrophy with emphasis on the principles of training.