122 resultados para secondary air
Resumo:
Studies of cooking-generated NO2 effects are rare in occupational epidemiology. In the present study, we evaluated the lung function of professional cooks exposed to NO2 in hospital kitchens. We performed spirometry in 37 cooks working in four hospital kitchens and estimated the predicted FVC, FEV1 and FEF25-75, based on age, sex, race, weight, and height, according to Knudson standards. NO2 measurements were obtained for 4 consecutive days during 4 different periods at 20-day intervals in each kitchen. Measurements were performed inside and outside the kitchens, simultaneously using Palm diffusion tubes. A time/exposure indicator was defined as representative of the cumulative exposure of each cook. No statistically significant effect of NO2 exposure on FVC was found. Each year of work as a cook corresponded to a decrease in predicted FEV1 of 2.5% (P = 0.046) for the group as a whole. When smoking status and asthma were included in the analysis the effect of time/exposure decreased about 10% and lost statistical significance. On predicted FEF25-75, a decrease of 3.5% (P = 0.035) was observed for the same group and the inclusion of controllers for smoking status and asthma did not affect the effects of time/exposure on pulmonary function parameter. After a 10-year period of work as cooks the participants of the study may present decreases in both predicted FEV1 and FEF25-75 that can reach 20 and 30%, respectively. The present study showed small but statistically significant adverse effects of gas stove exposure on the lung function of professional cooks.
Resumo:
Type 2 diabetes increases the risk of cardiovascular mortality and these patients, even without previous myocardial infarction, run the risk of fatal coronary heart disease similar to non-diabetic patients surviving myocardial infarction. There is evidence showing that particulate matter air pollution is associated with increases in cardiopulmonary morbidity and mortality. The present study was carried out to evaluate the effect of diabetes mellitus on the association of air pollution with cardiovascular emergency room visits in a tertiary referral hospital in the city of São Paulo. Using a time-series approach, and adopting generalized linear Poisson regression models, we assessed the effect of daily variations in PM10, CO, NO2, SO2, and O3 on the daily number of emergency room visits for cardiovascular diseases in diabetic and non-diabetic patients from 2001 to 2003. A semi-parametric smoother (natural spline) was adopted to control long-term trends, linear term seasonal usage and weather variables. In this period, 45,000 cardiovascular emergency room visits were registered. The observed increase in interquartile range within the 2-day moving average of 8.0 µg/m³ SO2 was associated with 7.0% (95%CI: 4.0-11.0) and 20.0% (95%CI: 5.0-44.0) increases in cardiovascular disease emergency room visits by non-diabetic and diabetic groups, respectively. These data indicate that air pollution causes an increase of cardiovascular emergency room visits, and that diabetic patients are extremely susceptible to the adverse effects of air pollution on their health conditions.
Resumo:
The continuous intravenous administration of isotopic bicarbonate (NaH13CO2) has been used for the determination of the retention of the 13CO2 fraction or the 13CO2 recovered in expired air. This determination is important for the calculation of substrate oxidation. The aim of the present study was to evaluate, in critically ill patients with sepsis under mechanical ventilation, the 13CO2 recovery fraction in expired air after continuous intravenous infusion of NaH13CO2 (3.8 µmol/kg diluted in 0.9% saline in ddH2O). A prospective study was conducted on 10 patients with septic shock between the second and fifth day of sepsis evolution (APACHE II, 25.9 ± 7.4). Initially, baseline CO2 was collected and indirect calorimetry was also performed. A primer of 5 mL NaH13CO2 was administered followed by continuous infusion of 5 mL/h for 6 h. Six CO2 production (VCO2) measurements (30 min each) were made with a portable metabolic cart connected to a respirator and hourly samples of expired air were obtained using a 750-mL gas collecting bag attached to the outlet of the respirator. 13CO2 enrichment in expired air was determined with a mass spectrometer. The patients presented a mean value of VCO2 of 182 ± 52 mL/min during the steady-state phase. The mean recovery fraction was 0.68 ± 0.06%, which is less than that reported in the literature (0.82 ± 0.03%). This suggests that the 13CO2 recovery fraction in septic patients following enteral feeding is incomplete, indicating retention of 13CO2 in the organism. The severity of septic shock in terms of the prognostic index APACHE II and the sepsis score was not associated with the 13CO2 recovery fraction in expired air.
Resumo:
The objective of the present study was to estimate the contribution of environmental pollutants to hospital admissions for cardiovascular disease. A time series ecological study was conducted on subjects aged over 60 years and living in São José dos Campos, Brazil, with a population near 700,000 inhabitants. Hospital admission data of public health patients (SUS) were obtained from DATASUS for the period between January 1, 2004 and December 31, 2006, according to the ICD-10 diagnoses I20 to I22 and I24. Particulate matter with less than 10 µm in aerodynamic diameter, sulfur dioxide and ozone were the pollutants examined, and the control variables were mean temperature and relative humidity. Data on pollutants were obtained from the São Paulo State Sanitary Agency. The generalized linear model Poisson regression with lags of up to 5 days was used. There were 1303 hospital admissions during the period. Exposure to particulate matter was significantly associated with hospitalization for cardiovascular disease 3 days after exposure (RR = 1.006; 95%CI = 1.000 to 1.010) and an increase of 16 µg/m³ was associated with a 10% increase in risk of hospitalization; other pollutants were not associated with hospitalization. Thus, it was possible to identify the role of exposure to particulate matter as an environmental pollutant in hospitalization for cardiovascular disease in a medium-sized city inSoutheastern Brazil.
Resumo:
Osteoporosis is a major complication of chronic cholestatic liver disease (CCLD). We evaluated the efficacy of using disodium pamidronate (1.0 mg/kg body weight) for the prevention (Pr) or treatment (Tr) of cholestasis-induced osteoporosis in male Wistar rats: sham-operated (Sham = 12); bile duct-ligated (Bi = 15); bile duct-ligated animals previously treated with pamidronate before and 1 month after surgery (Pr = 9); bile duct-ligated animals treated with pamidronate 1 month after surgery (Tr = 9). Rats were sacrificed 8 weeks after surgery. Immunohistochemical expression of IGF-I and GH receptor was determined in the proximal growth plate cartilage of the left tibia. Histomorphometric analysis was performed in the right tibia and the right femur was used for biomechanical analysis. Bone material volume over tissue volume (BV/TV) was significantly affected by CCLD (Sham = 18.1 ± 3.2 vs Bi = 10.6 ± 2.2%) and pamidronate successfully increased bone volume. However, pamidronate administered in a preventive regimen presented no additional benefit on bone volume compared to secondary treatment (BV/TV: Pr = 39.4 ± 12.0; Tr = 41.2 ± 12.7%). Moreover, the force on the momentum of fracture was significantly reduced in Pr rats (Sham = 116.6 ± 23.0; Bi = 94.6 ± 33.8; Pr = 82.9 ± 22.8; Tr = 92.5 ± 29.5 N; P < 0.05, Sham vs Pr). Thus, CCLD had a significant impact on bone histomorphometric parameters and pamidronate was highly effective in increasing bone mass in CCLD; however, preventive therapy with pamidronate has no advantage regarding bone fragility.
Resumo:
Few studies evaluate the amount of particulate matter less than 2.5 mm in diameter (PM2.5) in relation to a change in lung function among adults in a population. The aim of this study was to assess the association of coal as a domestic energy source to pulmonary function in an adult population in inner-city areas of Zunyi city in China where coal use is common. In a cross-sectional study of 104 households, pulmonary function measurements were assessed and compared in 110 coal users and 121 non-coal users (≥18 years old) who were all nonsmokers. Several sociodemographic factors were assessed by questionnaire, and ventilatory function measurements including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), the FEV1/FVC ratio, and peak expiratory flow rate (PEFR) were compared between the 2 groups. The amount of PM2.5 was also measured in all residences. There was a significant increase in the relative concentration of PM2.5 in the indoor kitchens and living rooms of the coal-exposed group compared to the non-coal-exposed group. In multivariate analysis, current exposure to coal smoke was associated with a 31.7% decrease in FVC, a 42.0% decrease in FEV1, a 7.46% decrease in the FEV1/FVC ratio, and a 23.1% decrease in PEFR in adult residents. The slope of lung function decrease for Chinese adults is approximately a 2-L decrease in FVC, a 3-L decrease in FEV1, and an 8 L/s decrease in PEFR per count per minute of PM2.5 exposure. These results demonstrate the harmful effects of indoor air pollution from coal smoke on the lung function of adult residents and emphasize the need for public health efforts to decrease exposure to coal smoke.
Resumo:
Cocoa flavour is greatly influenced by polyphenols. These compounds undergo a series of transformations during cocoa processing leading to the characteristic cocoa flavour. The use of exogenous polyphenol oxidase (PPO) proved to be useful to reduce polyphenol content in cocoa nibs. The effect of a PPO associated or not with air over total phenol and tannin content was evaluated. Cocoa nibs were autoclaved and treated with a PPO or water in the absence or presence of an air flow for 0.5, 1, 2 and 3 hours. Total phenol content was reduced in PPO or water treatments, but when associated with air there was an increase in phenol content. Tannin content was reduced only by the treatment with water and air.
Resumo:
The freezing times of fruit pulp models packed and conditioned in multi-layered boxes were evaluated under conditions similar to those employed commercially. Estimating the freezing time is a difficult practice due to the presence of significant voids in the boxes, whose influence may be analyzed by means of various methods. In this study, a procedure for estimating freezing time by using the models described in the literature was compared with experimental measurements by collecting time/temperature data. The following results show that the airflow through packages is a significant parameter for freezing time estimation. When the presence of preferential channels was considered, the predicted freezing time in the models could be 10% lower than the experimental values, depending on the method. The isotherms traced as a function of the location of the samples inside the boxes showed the displacement of the thermal center in relation to the geometric center of the product.
Resumo:
Os fermentadores tipo air lift oferecem vantagens tais como: eficiente homogeneização dos componentes, baixo cisalhamento e economia de energia, pois o meio é agitado pelo processo de aeração, sem necessidade de agitação mecânica. O objetivo deste trabalho foi analisar a cinética de crescimento de Saccharomyces boulardii neste fermentador, com aeração de 1 e 1,5 vvm (volume de ar por volume de meio, por minuto), comparada com o crescimento em frascos agitados em shaker, visando a futura aplicação deste fermentador, em escala industrial. Os resultados indicaram que houve uma diminuição do pH com o consumo da glicose do meio, a qual foi totalmente consumida até o final da fase exponencial, de 5 e 6 horas para o shaker e o air lift, respectivamente. Após este período houve uma alteração na velocidade de crescimento de S. boulardii, em ambos os equipamentos, indicando uma possível mudança na fonte de carbono utilizada, uma vez que toda a glicose foi consumida após estes períodos. Os valores de velocidades específicas de crescimento foram semelhantes para o shaker e air-lift com 1,0 vvm, porém inferiores ao air-lift com 1,5 vvm, indicando que neste último reator há possibilidades de se conseguir uma velocidade de produção celular maior, dependendo apenas da eficiência de oxigenação oferecida.
Resumo:
The aim of this research was to study the effect of air-temperature and diet composition on the mass transfer kinetics during the drying process of pellets used for Japanese Abalone (Haliotis discus hannai) feeding. In the experimental design, three temperatures were used for convective drying, as well as three different diet compositions (Diets A, B and C), in which the amount of fishmeal, spirulin, algae, fish oil and cornstarch varied. The water diffusion coefficient of the pellets was determined using the equation of Fick's second law, which resulted in values between 0.84-1.94×10-10 m²/s. The drying kinetics was modeled using Page, Modified Page, Root of time, Exponential, Logarithmic, Two-Terms, Modified Henderson-Pabis and Weibull models. In addition, two new models, referred to as 'Proposed' models 1 and 2, were used to simulate this process. According to the statistical tests applied, the models that best fitted the experimental data were Modified Henderson-Pabis, Weibull and Proposed model 2, respectively. Bifactorial analysis of variance ANOVA showed that Diet A (fishmeal 44%, spirulin 9%, fish oil 1% and cornstarch 36%) presented the highest diffusion coefficient values, which were favored by the temperature increase in the drying process.
Resumo:
The aim of the present study was to precool cauliflower using forced-air, vacuum and high and low flow hydro cooling methods. The weight of the precooled cauliflower heads (5000±5 g) was measured before they were placed in standard plastic crates. Cauliflower heads, whose initial temperature was 23.5 ± 0.5 ºC, were cooled until the temperature reached at 1 ºC. During the precooling process, time-dependent temperature and energy consumption were measured, and during vacuum precooling, the decreasing pressure values were recorded, and a curve of time-dependent pressure decrease (vacuum) was built. The most suitable cooling method to precool cauliflower in terms of cooling time and energy consumption was vacuum, followed by the high and low flow hydro and forced-air precooling methods, respectively. The highest weight loss was observed in the vacuum precooling method, followed by the forced-air method. However, there was an increase in the weight of the cauliflower heads in the high and low flow hydro precooling method. The best colour and hardness values were found in the vacuum precooling method. Among all methods tested, the most suitable method to precool cauliflower in terms of cooling and quality parameters was the vacuum precooling method.
Resumo:
Cauliflower heads, which were precooled using four different methods including vacuum, forced-air, and high and low flow hydro precooling, were stored under controlled atmosphere and room conditions. Controlled atmosphere conditions (CA) were as follows: 1°C temperature, 90 ± 5% relative humidity, and 0:21 [(%CO2:%O2) – (0:21) control] atmosphere composition. Room conditions (RC) were: 22±1°C temperature and 55-60% humidity. Various quality parameters of the cauliflower heads were assessed during storage (days 0, 7, 14, 21, 28, and 35) under controlled atmosphere and room conditions (days 0, 5, and 10). During storage, weight loss, deterioration rate, overall sensory quality score, hardness, and colour (L, a, b, C and α) were evaluated. In the present study, the strength and quality parameters of cauliflower under CA and RC conditions were obtained. Vacuum precooling was found to be most suitable method before cauliflower was submitted to cold storage and sent to market. Furthermore, the storage of cauliflower without precooling resulted in a significant decrease in quality parameters.
Resumo:
Abstract The aim of this study was to evaluate the microbiological and sensory quality of the Jambu (Acmella oleracea L.) in natura and dried by cold air, and the determination of its drying curve. The microbiological analysis were performed to Salmonella spp, the coagulase-positive Staphylococcus, and coliforms in the both Jambu samples, at 45 °C. Tacacá, the typical food dish of Pará state, Brazil, has showed good consumer global acceptance in the sensory evaluation of Jambu in natura (score of 8.00 ± 1.46) and dried (score of 8.67 ± 0.66). Both samples, Jambu in natura and dried by cold air, were by the current legislation regarding the microbiological aspects, this is the absence of Salmonella spp, coagulase-positive Staphylococcus <1×101 CFU/g, and coliforms <3 MPN/g, at 45 °C. Thus, considering sensory and health aspects, the commercialization of dried Jambu becomes viable, facilitating its transportation and handling, as well as for reducing its vegetable mass.
Resumo:
Under subtropical and tropical environments soybean seed (Glycine max (L.) Merrill) are harvested early to avoid deterioration from weathering. Careful after-harvest drying is required and is an important step in maintaining the physiological quality of the seed. Soybean seed should be harvested when the moisture content is in a range of 16-20%. Traditional drying utilizes a high temperature air stream passed through the seed mass without dehumidification. The drying time is long because the system is inefficient and the high temperature increases the risk of thermal damage to the seed. New technology identified as heat pipe technology (HPT) is available and has the unique feature of removing the moisture from the air stream before it is passed through the seed mass at the same environmental temperature. Two studies were conducted to evaluate the performance of HPT for dry soybean seed. In the first study the seeds were dried from 17.5 to 11.1% in 2 hours and 29 minutes and in the second sudy the seeds were dried from 22.6 to 11.9% in 16 hours and 32 minutes. This drying process caused no reduction in seed quality as measured by the standard germination, tetrazolium-viability, accelerated aging and seedling vigor classification tests. The only parameter that indicated a slight seed quality reduction was tetrazolium vigor in the second study. It was concluded that the HPT system is a promising technology for drying soybean seed when efficiency and maintenance of physiological quality are desired.