119 resultados para phenolic components
Resumo:
In Brazil, the grape and wine production takes place mainly in the state of Rio Grande do Sul, and the region "Serra" is known as the traditional wine region. In the last years, new areas have emerged, with emphasis for the Campanha region; the red wines from this region have low acidity, little color intensity, and are wines to drink while young, even when produced from grape varieties such as Merlot and Cabernet Sauvignon. The objective of this study was to evaluate the influence of different maceration types on the phenolic compounds of Merlot wines made with grapes produced in two regions of Rio Grande do Sul, Serra and Campanha, as well as to identify the key differences between the wines produced. The localization of the vineyards seems to have more influence on the wine characteristics than the maceration type. The color due copigmentation was an important aspect in the wines made with short maceration. The effect of extended maceration was different than the expected for the Campanha region wines; the extended maceration increased the extraction of tannins resulting in greater color intensity and a greater amount of anthocyanins. The pH control seems to be a key factor for the Campanha region wines.
Resumo:
Effects of cold storage and three common cooking practices, blanching, sauteing, and microwave cooking at different time intervals, on the content of glucosinolate (GSL) anticancer components in six Brassica vegetables were investigated. Eleven GSLs including progoitrin, glucoraphanin, sinigrin, glucoalyssin, gluconapin, glucobrassicanapin, glucoerucin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin were quantified using LC-MS and HPLC. Storage at 4 ºC indicated no significant loss of GSLs in broccoli, kohlrabi, and cabbage, and approximately 90-100% of the total concentration of aliphatic and indolyl GSLs were detected. Interestingly, glucoraphanin and glucobrassicin, known as a cancer prevention agents, increased approximately above 50% in broccoli, kohlrabi, and cabbage, while the amount of glucobrassicin decreased by 5% in cauliflower for 5 days at 4 ºC. Blanching of broccoli at 120 sec significantly (36%) decreased total GSLs; however, sautéing and microwaving decreased by13-26%. Individual GSLs have different response at blanching. These findings suggest that different processing methods for each vegetable would be preferred to preserve the nutritional qualities.
Resumo:
The objective of this study was to determine the optimal temperature for storing gabiroba fruit (Campomanesia pubescens) without affecting compounds' quality. The fruits were stored at different temperatures (0 ºC, 6 ºC, 12 ºC, and 20 ºC) and the effect on the pH, total titratable acidity, soluble solids, total sugars, vitamin C, and antioxidant components such as tannins and total phenolic compounds was evaluated. It was observed an increase in the pH and total titratable acidity during storage at all the temperatures tested. Gabiroba fruits were stored for 9 and 3 days at 12 ºC and 20 ºC, respectively, and under both temperatures they showed a reduction in tannins and an increase in vitamin C content. As gabirobas armazenadas a 0º and 6 ºC alcançaram maior tempo de armazenamento After 12 days of storage, the fruits stored at 6 ºC contained higher amounts of water soluble solids, sugars, and antioxidants. In general, for long term storage, it is suggested to store gabiroba fruits at 6 ºC. On the other hand, for short term storage, the temperature of 12 ºC would be the better to keep high levels of vitamin C and phenolic compounds.
Resumo:
Food industry has been developing products to meet the demands of increasing number of consumers who are concerned with their health and who seek food products that satisfy their needs. Therefore, the development of processed foods that contain functional components has become important for this industry. Microencapsulation can be used to reduce the effects of processing on functional components and preserve their bioactivity. The present study investigated the production of lipid microparticles containing phytosterols by spray chilling. The matrices comprised mixtures of stearic acid and hydrogenated vegetable fat, and the ratio of the matrix components to phytosterols was defined by an experimental design using the mean diameters of the microparticles as the response variable. The melting point of the matrices ranged from 44.5 and 53.4 ºC. The process yield was melting point dependent; the particles that exhibited lower melting point had greater losses than those with higher melting point. The microparticles' mean diameters ranged from 13.8 and 32.2 µm and were influenced by the amount of phytosterols and stearic acid. The microparticles exhibited spherical shape and typical polydispersity of atomized products. From a technological and practical (handling, yield, and agglomeration) points of view, lipid microparticles with higher melting point proved promising as phytosterol carriers.
Resumo:
The application of natural antifungal substances is motivated by the need for alternatives to existing methods that are not always applicable, efficient, or that do not pose risk to consumers or the environment. Furthermore, studies on the behaviour of toxigenic species in the presence of natural fungicides have enabled their safe application in the food chain In this study, Spirulina LEB-18 phenolic extract was assessed for its antifungal activity on 12 toxigenic strains of Fusarium graminearum isolated from barley and wheat. The susceptible metabolic pathways were assessed through the determination of structural compounds (glucosamine and ergosterol) and enzyme activity of the microorganisms' primary metabolism. The results indicate that phenolic extracts reduced the growth rate of the toxigenic species investigated. The IC50 was obtained by applying 3 to 8% (p/p) of phenolic compounds in relation to the culture medium. The use of this natural fungicide proved promising for the inhibition of fungal multiplication, especially in terms of the inactivation of enzymatic systems (amylase and protease) of Fusarium graminearum.
Resumo:
The total phenolic and flavonoid content, color, and antioxidant activity were evaluated from ten honey samples from Apis mellifera L. collected from Roraima State, Brazil. The total phenolic content was determined using the Folin-Ciocalteu reagent and ranged from 250 to 548 mg gallic acid kg-1 of honey. The total flavonoid content was obtained using two methods: total flavones/flavonols were determined with aluminum chloride, and flavonones/dihydroflavonols were determined with 2,4-dinitrophenylhydrazine. The results ranged from 9 to 48.6 mg of quercetine kg-1 of honey and 1805 to 2606 mg of pinocembrin kg-1 of honey, respectively. Antioxidant activity was measured with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavengers, and the results of the IC50 ranged from 3.17 to 8.79 mg/mL. Statistical analysis demonstrated positive correlations between color intensity, flavone and flavonol content, and phenolic content and negative correlations with antioxidant capacity.
Resumo:
Olive mill wastewater, hereafter noted as OMWW was tested for its composition in phenolic compounds according to geographical areas of olive tree, i.e. the plain and the mountainous areas of Tadla-Azilal region (central Morocco). Biophenols extraction with ethyl acetate was efficient and the phenolic extract from the mountainous areas had the highest concentration of total phenols' content. Fourier-Transform-Middle Infrared (FT-MIR) spectroscopy of the extracts revealed vibration bands corresponding to acid, alcohol and ketone functions. Additionally, HPLC-ESI-MS analyses showed that phenolic alcohols, phenolic acids, flavonoids, secoiridoids and derivatives and lignans represent the most abundant phenolic compounds. Nüzhenide, naringenin and long chain polymeric substances were also detected. Mountainous areas also presented the most effective DPPH scavenging potential compared to plain areas; IC50 values were 11.7 ± 5.6 µg/ml and 30.7 ± 4.4 µg/ml, respectively. OMWW was confirmed as a rich source of natural phenolic antioxidant agents.
Resumo:
Blackberry (Rubus fruticosus, cultivar Tupy), an expanding fruit crop in southern Brazil, is greatly appreciated for its flavor and bioactive potential with limited characterization of its metabolite content. The purpose of this study was to characterize the bioactive and volatile organic compound (VOC) content of mature blackberry fruit of cultivar Tupy. Gallic acid, (-)-epicatechin, ferulic acid, and quercetin were the main phenolic compounds found in mature fruit. Among the VOCs identified in 'Tupy' blackberry were important flavor components characteristic of fruit berries, including hydrocarbons, alcohols, aldehydes, ketones, esters, and terpenoids. Some of the VOCs had not been previously found in blackberry, while others have been associated with typical blackberry flavor.
Resumo:
Culinary herbs and spices have long been considered essentially as flavor enhancers or preservatives, with little attention given to their potential health-promoting properties. Nevertheless, recent research has shown them to be significant dietary sources of bioactive phenolic compounds. Despite noteworthy efforts performed in recent years to improve our knowledge of their chemical composition, a detailed phenolic profile of these plant-based products is still lacking. In the present work, antioxidant activities and phenolic composition of five herbs and spices, namely caraway, turmeric, dill, marjoram and nutmeg, have been studied. The use of liquid chromatography coupled to LTQ-Orbitrap mass spectrometry enabled the identification of up to 42 phenolic compounds. To the best of our knowledge, two of them, apigenin-C-hexoside-C-pentoside and apigenin-C-hexoside-C-hexoside have not been previously reported in turmeric. Qualitative and quantitative differences were observed in polyphenol profiles, with the highest phenolic content found in caraway. Multivariate statistical treatment of the results allowed the detection of distinctive features among the studied herbs and spices.
Resumo:
The interaction between three phenolic compounds (catechin, caffeic acid and ferulic acid) onto two dietary fibres (cellulose and xylan) has been evaluated to inquire possible interferences on the biodisponibility of phenolic compounds. The adsorption kinetics were performed using solutions containing 100 mg/L of phenolic compounds during a contact time ranging between 10 and 120 minutes at pH 2.0, 4.5, and 7.0. After the kinetics, isotherms were obtained using phenolic compounds concentration ranging between 10 and 80 mg/L during 60 minutes, at pH 2.0 and 7.0 and temperature of 36 °C. Results indicate that adsorbed quantities mainly changed in function of pH, however the maximum adsorption was only of 0.978 mg of caffeic acid/g of xylan at pH 2 and after 60 min. Redlich-Peterson model were able to predict the adsorption isotherms of all phenolic compounds onto cellulose, except for caffeic acid at pH 7.0. The low adsorption capacities observed suggest that both dietary fibres are unable to compromise the biodisponibility of phenolic compounds, especially in the small intestine, where they are partially absorbed.
Resumo:
AbstractThermal processing and production practices used in vegetables can cause changes in their phytochemical contents. Eggplant is characterized by its high antioxidant content. The objective of this work was to determine levels of anthocyanins, polyphenols, and flavonoids and antioxidant capacity in organically and conventionally grown eggplant prepared fresh or subjected to one of three thermal preparation methods: boiling, baking or steaming. The soluble and hydrolyzable polyphenols and flavonoids content were quantified by Folin-Ciocalteu and Aluminum chloride methods, respectively. Anthocyanins were quantified according to the pH differential method. Antioxidant capacity was determined by DPPH and ORAC methods. The results showed differences between organic and conventional eggplant for some variables although cultivation method did not have a consistent effect. Hydrolysable polyphenol content was greater, and soluble and hydrolysable antioxidant capacities were higher in organically grown eggplant, while anthocyanin content was greater in conventionally grown eggplant. Fresh eggplant produced under conventional cultivation had a much greater content of anthocyanins compared to that of other cultivation method-thermal treatment combination. In general, steamed eggplant contained higher total polyphenol and flavonoid levels as well as greater antioxidant capacity. Steamed eggplant from both conventional and organic systems also had high amounts of anthocyanins compared to other thermal treatments.
Resumo:
Abstract The use of agroindustrial residues is an economical solution to industrial biotechnology. Coffee husk and pulp are abounding residues from coffee industry which can be used as substrates in solid state fermentation process, thus allowing a liberation and increase in the phenolic compound content with high added value. By employing statistical design, initial moisture content, pH value in the medium, and the incubation temperature were evaluated, in order to increase the polyphenol content in a process of solid state fermentation by Penicillium purpurogenum. The main phenolic compounds identified through HPLC in fermented coffee residue were chlorogenic acid, caffeic acid, and rutin. Data obtained through HPLC with the radical absorbance capacity assay suggest the fermented coffee husk and pulp extracts potential as a source of phenolic acids and flavonoids. Results showed good perspectives when using P. purpurogenum strain to enhance the liberation of phenolic compounds in coffee residues.
Resumo:
The presence of dietary fiber (DF) in the food matrix of some tropical fruits plays an important role in the release and absorption of its bioactive compounds, such as phenolic compounds (PCs). The aim of this study was to evaluate the effect of the DF fractions in mango cv. ‘Ataulfo’, papaya cv. ‘Maradol’ and pineapple cv. ‘Esmeralda’, on the bioaccessibility of their PCs and antioxidant capacity (AOXC) under an in vitro digestion model. The highest PCs content and AOXC was found in mango (274.30 mg GAE/100 g FW), followed by papaya (212 mg GAE//100 g FW), and pineapple (107.63 mg GAE/100 g FW), respectively. About 50% of the total PCs in all fruits was released at gastric phase, increasing closer to 60% at intestinal phase in mango and pineapple. However, the highest content of PCs associated to DF was found in mango (2.48 mg GAE/100 g FW) compared with papaya DF fractions (0.96 GAE/100 g FW) and pineapple (0.52 GAE/100 g FW). The presence of DF in mango, papaya and pineapple did not represent a major limitation on the bioaccessibility of its PCs according to the in vitro digestion model used in this study.
Resumo:
Abstract The aim of this study was to assess the anti-quorum sensing activity of phenolic extracts from grumixama (Eugenia brasiliensis), also known as Brazilian cherry, in concentrations that did not interfere with bacterial growth. The pulp phenolic compounds were extracted by using solid phage extraction in a mini-collumn C18 and quantified by spectrophotometry. The anti-quorum sensing activity was evaluated by testing the inhibition of violacein production in Chromobacterium violaceum and by evaluating the swarming motility in Aeromonas hydrophila and Serratia marcescens, both phenotypes regulated by quorum sensing. The phenolic extract strongly inhibited the production of violacein in C. violaceum, reducing its production in comparison with a control with no extract. No inhibition of growth was observed at the concentrations tested for quorum sensing inhibition. Confirming the quorum sensing inhibition phenotype, the extract was also able to inhibit swarming motility in S. marcescens and in A. hydrophila, although in the later the effect was marginal. Overall, these results indicate that phenolic extract from E. brasiliensis presents quorum sensing inhibitory activity most likely due to the presence of fruit phenolics which have been implicated as quorum sensing inhibitors in Gram negative bacteria.