116 resultados para methylenetetrahydrofolate dehydrogenase (NADP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maternal dietary protein restriction during pregnancy is associated with low fetal birth weight and leads to renal morphological and physiological changes. Different mechanisms can contribute to this phenotype: exposure to fetal glucocorticoid, alterations in the components of the renin-angiotensin system, apoptosis, and DNA methylation. A low-protein diet during gestation decreases the activity of placental 11ß-hydroxysteroid dehydrogenase, exposing the fetus to glucocorticoids and resetting the hypothalamic-pituitary-adrenal axis in the offspring. The abnormal function/expression of type 1 (AT1R) or type 2 (AT2R) AngII receptors during any period of life may be the consequence or cause of renal adaptation. AT1R is up-regulated, compared with control, on the first day after birth of offspring born to low-protein diet mothers, but this protein appears to be down-regulated by 12 days of age and thereafter. In these offspring, AT2R expression differs from control at 1 day of age, but is also down-regulated thereafter, with low nephron numbers at all ages: from the fetal period, at the end of nephron formation, and during adulthood. However, during adulthood, the glomerular filtration rate is not altered, due to glomerulus and podocyte hypertrophy. Kidney tubule transporters are regulated by physiological mechanisms; Na+/K+-ATPase is inhibited by AngII and, in this model, the down-regulated AngII receptors fail to inhibit Na+/K+-ATPase, leading to increased Na+ reabsorption, contributing to the hypertensive status. We also considered the modulation of pro-apoptotic and anti-apoptotic factors during nephrogenesis, since organogenesis depends upon a tight balance between proliferation, differentiation and cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ25-35; 50 µM). Cells (1 x 10(6) cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer’s and Huntington’s diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min-1·mg protein-1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a "time-efficient" strategy inducing metabolic adaptation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ricinus communis L. is of great economic importance due to the oil extracted from its seeds. Castor oil has been used for pharmaceutical and industrial applications, as a lubricant or coating agent, as a component of plastic products, as a fungicide or in the synthesis of biodiesel fuels. After oil extraction, a castor cake with a large amount of protein is obtained. However, this by-product cannot be used as animal feed due to the presence of toxic (ricin) and allergenic (2S albumin) proteins. Here, we propose two processes for detoxification and allergen inactivation of the castor cake. In addition, we establish a biological test to detect ricin and validate these detoxification processes. In this test, Vero cells were treated with ricin, and cell death was assessed by cell counting and measurement of lactate dehydrogenase activity. The limit of detection of the Vero cell assay was 10 ng/mL using a concentration of 1.6 x 10(5) cells/well. Solid-state fermentation (SSF) and treatment with calcium compounds were used as cake detoxification processes. For SSF, Aspergillus niger was grown using a castor cake as a substrate, and this cake was analyzed after 24, 48, 72, and 96 h of SSF. Ricin was eliminated after 24 h of SSF treatment. The cake was treated with 4 or 8% Ca(OH)2 or CaO, and both the toxicity and the allergenic properties were entirely abolished. A by-product free of toxicity and allergens was obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present study was to investigate the effects of eccentric training on the activity of mitochondrial respiratory chain enzymes, oxidative stress, muscle damage, and inflammation of skeletal muscle. Eighteen male mice (CF1) weighing 30-35 g were randomly divided into 3 groups (N = 6): untrained, trained eccentric running (16°; TER), and trained running (0°) (TR), and were submitted to an 8-week training program. TER increased muscle oxidative capacity (succinate dehydrogenase and complexes I and II) in a manner similar to TR, and TER did not decrease oxidative damage (xylenol and creatine phosphate) but increased antioxidant enzyme activity (superoxide dismutase and catalase) similar to TR. Muscle damage (creatine kinase) and inflammation (myeloperoxidase) were not reduced by TER. In conclusion, we suggest that TER improves mitochondrial function but does not reduce oxidative stress, muscle damage, or inflammation induced by eccentric contractions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quercetin (Que), a plant-derived flavonoid, has multiple benefical actions on the cardiovascular system. The current study investigated whether Que postconditioning has any protective effects on myocardial ischemia/reperfusion (I/R) injury in vivo and its potential cardioprotective mechanisms. Male Sprague-Dawley rats were randomly allocated to 5 groups (20 animals/group): sham, I/R, Que postconditioning, Que+LY294002 [a phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway inhibitor], and LY294002+I/R. I/R was produced by 30-min coronary occlusion followed by 2-h reperfusion. At the end of reperfusion, myocardial infarct size and biochemical changes were compared. Apoptosis was evaluated by both TUNEL staining and measurement of activated caspase-3 immunoreactivity. The phosphorylation of Akt and protein expression of Bcl-2 and Bax were determined by Western blotting. Que postconditioning significantly reduced infarct size and serum levels of creatine kinase and lactate dehydrogenase compared with the I/R group (all P<0.05). Apoptotic cardiomyocytes and caspase-3 immunoreactivity were also suppressed in the Que postconditioning group compared with the I/R group (both P<0.05). Akt phosphorylation and Bcl-2 expression increased after Que postconditioning, but Bax expression decreased. These effects were inhibited by LY294002. The data indicate that Que postconditioning can induce cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accumulating evidence has indicated the importance of cancer stem cells in carcinogenesis. The goal of the present study was to determine the effect of low-dose cisplatin on enriched liver cancer stem cells (LCSCs). Human hepatoblastoma HepG2 cells were treated with concentrations of cisplatin ranging from 1 to 5 μg/mL. Cell survival and proliferation were evaluated using a tetrazolium dye (MTT) assay. LCSCs were identified using specific markers, namely aldehyde dehydrogenase-1 (ALDH1) and CD133. The percentage of ALDH1+ or CD133+ cells was examined by flow cytometric analysis. The expression of ALDH1 and/or CD133 in HepG2 cells was determined by immunocytochemical analysis. Low-dose cisplatin treatment significantly decreased cell survival in HepG2 cells after 24 or 72 h. However, the percentage of LCSCs in the surviving cells was greatly increased. The percentage of ALDH1+ or CD133+ cells was increased in a time- and dose-dependent manner after treatment with 1-4 μg/mL cisplatin, whereas 5 μg/mL cisplatin exposure slightly reduced the number of positive cells. These findings indicate that low-dose cisplatin treatment may efficiently enrich the LCSC population in HepG2 cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maple syrup urine disease (MSUD) is an autosomal recessive disease associated with high levels of branched-chain amino acids. Children with MSUD can present severe neurological damage, but liver transplantation (LT) allows the patient to resume a normal diet and avoid further neurological damage. The use of living related donors has been controversial because parents are obligatory heterozygotes. We report a case of a 2-year-old child with MSUD who underwent a living donor LT. The donor was the patient's mother, and his liver was then used as a domino graft. The postoperative course was uneventful in all three subjects. DNA analysis performed after the transplantation (sequencing of the coding regions of BCKDHA, BCKDHB, andDBT genes) showed that the MSUD patient was heterozygous for a pathogenic mutation in the BCKDHB gene. This mutation was not found in his mother, who is an obligatory carrier for MSUD according to the family history and, as expected, presented both normal clinical phenotype and levels of branched-chain amino acids. In conclusion, our data suggest that the use of a related donor in LT for MSUD was effective, and the liver of the MSUD patient was successfully used in domino transplantation. Routine donor genotyping may not be feasible, because the test is not widely available, and, most importantly, the disease is associated with both the presence of allelic and locus heterogeneity. Further studies with this population of patients are required to expand the use of related donors in MSUD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth factors. It improves angiogenesis and tissue perfusion in ischemic skeletal muscle. In the present study, we tested the hypothesis that ischemic postconditioning is effective for salvaging ischemic skeletal muscle resulting from limb ischemia-reperfusion injury, and that the mechanism involves expression of HIF-1α. Wistar rats were randomly divided into three groups (n=36 each): sham-operated (group S), hindlimb ischemia-reperfusion (group IR), and ischemic postconditioning (group IPO). Each group was divided into subgroups (n=6) according to reperfusion time: immediate (0 h, T0), 1 h (T1), 3 h (T3), 6 h (T6), 12 h (T12), and 24 h (T24). In the IPO group, three cycles of 30-s reperfusion and 30-s femoral aortic reocclusion were carried out before reperfusion. At all reperfusion times (T0-T24), serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities, as well as interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α) concentrations, were measured in rats after they were killed. Histological and immunohistochemical methods were used to assess the skeletal muscle damage and HIF-1α expression in skeletal muscle ischemia. In groups IR and IPO, serum LDH and CK activities and TNF-α, IL-6, and IL-10 concentrations were all significantly increased compared to group S, and HIF-1α expression was up-regulated (P<0.05 or P<0.01). In group IPO, serum LDH and CK activities and TNF-α and IL-6 concentrations were significantly decreased, IL-10 concentration was increased, HlF-1α expression was down-regulated (P<0.05 or P<0.01), and the pathological changes were reduced compared to group IR. The present study suggests that ischemic postconditioning can reduce skeletal muscle damage caused by limb ischemia-reperfusion and that its mechanisms may be related to the involvement of HlF-1α in the limb ischemia-reperfusion injury-triggered inflammatory response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Limonene is a monoterpene obtained in large amounts from essential oils and is used as a raw material for the synthesis of flavors and fine chemicals. Several pathways or routes for the microbial degradation of limonene making use of the cytochrome P450-dependent monooxygenases have been described. In this study, we present a fermentative screening of microorganisms in order to verify their ability to perform the desirable conversion. In parallel, the PCR technique was used to select the microorganisms that contain the limC gene, which is responsible for the conversion of carveol to carvone. The microorganisms selected by PCR were not able to bioconvert limonene. From this result, we can suppose that these strains do not have the gene that codifies the enzyme responsible for the transformation of limonene into carveol. The results obtained in the fermentative screening showed that 4 microorganisms were able to bioconvert limonene into carveol. In addition, the amplification results showed the presence of fragments of 800 pb, expected for the limC gene. Therefore, the results obtained in the bioconversion and evaluation of the limC gene did not allow a correlation showing that these strains do not contain all the enzymes responsible for the conversion of limonene to carvone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main features that confer high quality to the seed is its genetic purity, in which one of the major causes of contamination is the self-pollination of the female parent. Up to date, there is no accurate and fast methods for detecting such contamination. Thus, this work was carried out to certify the genetic purity in seeds of hybrid maize using different biochemical and DNA-based markers. Two single-cross hybrids and their parental lines derived from the maize breeding program at UFLA were evaluated by isoenzymatic pattern of alcohol dehydrogenase (ADH), esterase (EST), acid phosphatase (ACP), glutamate-oxaloacetate transaminase (GOT), malate dehydrogenase (MDH), isocitrate dehydrogenase (IDH), phosphoglucomutase (PGM), 6-phosphoglucomate dehydrogenase (PGDH), catalase (CAT) and ß-glucosidade (ßGLU) and by microsatellites markers. The enzymatic systems that were able to distinguish the hybrids from their parental line were the catalase, the isocitrate dehydrogenase and the esterase. The esterase showed a Mendelian segregation pattern for UFLA 8/3 hybrid, that enables a safer genetic purity certificate. Microsatellites were able to differentiate the hybrid lines and the respective parental lines. Moreover, this technique was fast, precise and without environment effects. For microsatellites, the amplification pattern was identical when young leaves or seeds were used as DNA source. The possibility of using seeds as DNA source would accelerate and facilitate the role process of the genetic purity analysis.