157 resultados para herbicide selectivity
Resumo:
The catalytic dehydrogenation of ethylbenzene in presence of steam is the main commercial route to produce styrene. The industrial catalysts are potassium- and chromia-doped hematite which show low surface areas leading to bad performance and short life. In order to develop catalysts with high areas, the effect of beryllium on the textural properties and on the catalytic performance of this iron oxide was studied. The influence of the amount of the dopant, the starting material and the calcination temperature were also studied. In sample preparations, iron and beryllium salts (nitrate or sulfate) were hydrolyzed with ammonia and then calcinated. The experiments followed a factorial design with two variables in two levels (Fe/Be= 3 and 7; calcination temperature= 500 and 700ºC). Solids without any dopant were also prepared. Samples were characterized by elemental analysis, infrared spectroscopy, surface area and porosity measurements, X-ray diffraction, DSC and TG. The catalysts were tested in a microreactor at 524ºC and 1 atm, by using a mole ratio of steam/ ethylbenzene=10. The selectivity was measured by monitoring styrene, benzene and toluene formation. It was found that the effect of beryllium on the characteristics of hematite and on its catalytic performance depends on the starting material and on the amount of dopant. Surface areas increased due to the dopant as well as the nature of the precursor; samples produced by beryllium sulfate showed higher areas. Beryllium-doped solids showed a higher catalytic activity when compared to pure hematite, but no significant influence of the anion of starting material was noted. It can be concluded that beryllium acts as both textural and structural promoter. Samples with Fe/Be= 3, heated at 500ºC, lead to the highest conversion and were the most selective. However, catalysts prepared from beryllium sulfate are the most promising to ethylbenzene dehydrogenation due to their high surface area which could lead to a longer life.
Resumo:
Membrane reactors are reviewed with emphasis in their applications in catalysis field. The basic principles of these systems are presented as well as a historical development. The several kinds of catalytic membranes and their preparations are discussed including the problems, needs and challenges to be solved in order to use these reactors in commercial processes. Some applications of inorganic membrane reactors are also shown. It was concluded that these systems have a great potential for improving yield and selectivity of high temperature catalytic reactions. However, it is still an imerging technology with a need for a lot of fundamental research; several challenges should be overcome for the successful commercial application of these systems.
Resumo:
This review deals with principles of the liquid-liquid extraction, when performed in flow systems. This approach is frequently used for sample treatment to improve the selectivity and/or sensitivity in analytical measurements. The advances in this area are reported, including the use of monosegmented flow systems to perform metal extraction through both two-phase and single phase processes.
Resumo:
The construction of a tubular hydrogen ion-selective potentiometric electrode without inner reference solution, based on the tridodecylamine (TDDA) ionophore, and its evaluation in a flow system are described. TDDA was dissolved in 2-nitrophenyl octyl ether, dispersed in a PVC membrane and applied directly to a conducting support which consisted of an epoxy resin and graphite mixture. The electrode was designed with a tubular geometry to effort facilities to be coupled as part of a flow injection network. The main working characteristics such as response time, linear pH range, selectivity and life time were evaluated and compared with those obtained which a conventionally shaped electrode based on the same sensor. The electrode showed a slope of 51-52 mV dec-1 within a linear pH range from 4.0 up to 12.0.
Resumo:
The metal-catalyzed autooxidation of S(IV) has been studied for more than a century without a consensus being obtained as to reaction rates, rate laws or mechanisms. The main objective in this work was to explore the reaction between Cu(II) and SO2 in the presence of M(II), paying special attention to the formation of double sulfites like Cu2SO3.M(II)SO3.2H 2O. The two principal aspects studied were: i) a new way to prepare double sulfites with high purity degree and the selectivity in the M(II) incorporation during the salt formation.
Resumo:
The catalytic decomposition of soybean oil was studied in a fix bed reactor at 673 and 773 K and using amorphous silica-alumina and the zeolites USY, H-Mordenite and H-ZSM-5 as catalysts. Both the selectivity and the catalytic activity were determined by studying the product composition resulting from the chemical reactions. Physicochemical characteristics of the catalysts were obtained by X-ray fluorescence, Fourier Transform infrared spectroscopy, 29Si and 27Al Nuclear Magnetic Ressonance and textural analysis. The zeolites USY and H-ZSM-5, showing higher Brönsted acidity, yielded products with higher concentration in aromatic hydrocarbons, whereas with both H-Mordenite and amorphous silica-alumina the main products were paraffins.
Resumo:
Some alcohols and diols were oxidized electrocatalytically in a biphasic system using ceriumIV methanesulphonate as mediator. A mixture of methanesulphonic acid solution and benzene was used and aldehydes, ketones and diacids were some of the principal products obtained with yield varying from 27 to 98%. In several cases selectivity was obtained.
Resumo:
Studies of the use of a soil from river Pardo basin located at the Ribeirão Preto region, were realized with the aim of preparing catalysts. A clay, high purity kaolin type, was obtained after purification followed by treatment with acid and then calcined. The activity and selectivity of the catalysts were determined using cycloexene as substrate. The majority of the catalysts obtained yield a conversion higher than 70%.
Resumo:
Selectivity studies for the determination of Cr(VI) using the catalytic oxidation of the o-dianisidine by hydrogen peroxide showed two distincts situations. In the first, when interferents were studied by a univariate procedure, Cr(III) and Cu(II) cause serious interferences even at the 2:1 proportion, relative to Cr(VI), while Fe(III) interfered at the 15:1 ratio and EDTA at the 10:1 ratio. On the other hand, when a multivariate investigation was performed, Cr(III) did not present any significant principal effects and its significant interaction effects were negative, in contrast to EDTA, that presented positive interaction effects although, like Cr(III), did not show significant interaction effects. In view of the interferent's action it become necessary to separate Cr(VI) by extraction with methylisobutylketone in a chloridric acid medium before its determination in vegetals and in wastewater from a cellulose industry samples. Using this procedure, the method precision is ±0,5% at the 10 ng/mL Cr(VI) concentration level. The detection and quantification limits, calculated by means of absorbance measurements of ten replicates of blank reagents were 1,1 and 3,2 ng/mL, respectively. The results obtained with real samples showed a relative standard deviation between 1,2% and 3,0% relative to their reference values.
Resumo:
The herbicides are being used in huge quantities for various porpouses. Once the herbicide finds its way into the environment, a major part of it comes in contact with soil. Humic substances are major organic constituents of soil. These substances may interact with herbicides in different modes and adsorption is probably the most important one. Adsorption will control the quantity of herbicide in the soil solution, and determines its persistence, leaching, mobility and bioavailability. In this work we studied the interaction between the herbicide 2,4D and soil in the presence and absence of organic matter. The methodology utilized for the determination of 2,4D was gas chromatography with eletron capture detector. The behavior of 2,4D was evaluated through Freundlich isotherms. It was verified that the herbicide 2,4D has a large adsorption in the humic acid .
Resumo:
Silica gel was functionalized with [3-(2-aminoethyl)aminopropyl]trimethoxysilane group (SF-AEATS) and the characterization by chemical analysis (N) and infrared spectroscopy confirmed the functionalization. The capacity of the modified silica to adsorb the complex Ru(III)-EDTA from ethanolic solution was studied. The selectivity coefficients of the complex formed on the support obtained was (Gñ), 2,07 x 10(4) L/mol and the average number of ligand bonded by one metal ion on the support (ñ) was ~ 1.
Resumo:
A sodium mordenite zeolite (Na-MOR) was synthesized and modified by dealumination with chloridric acid solution (H-MOR). X-Ray Diffraction (XRD), Inductive Coupled Plasm (ICP) and Scanning Electron Micrograph (SEM) techniques were used for sample characterization. The zeolite catalytic behavior was evaluated through toluene disproportionation at 435°C. It was verified that mordenites were very selective for the disproportionation reaction and the samples with higher aluminum content showed larger initial activity, however, these samples showed too a higher deactivation velocity due to a blockage of the unidimensional porous system of the zeolite by coke deposits. The selectivity to xylene isomers was practically not influenced by the Si/Al ratio and changed with the time on stream, due to coke formation. Transition state shape selectivity inside the mordenite pores is also discussed.
Resumo:
ELISAs have been applied to pesticide residue analysis due to their high sensitivity and selectivity. However, some ELISAs performance may be affected by matrix components. In this work, ELISA for carbaryl in water samples was checked for interference by naturally occurring fulvic acids. The results suggested that the high fulvic acid concentration (³30 mg L-1) and acidic pH conditions (pH 4.0) interfere with the signal detection decreasing the method sensitivity. A dilution of the samples and adjust to pH 8.0 are appropriate to minimize the matrix interferences in the ELISA method. Good correlation between ELISA and HPLC-DAD results was observed.
Resumo:
An overview about the homogeneous and heterogeneous methods of synthesizing silylating agents and applications of the organofunctionalized silica-gel samples was explored. The pendant molecules attached covalently to the inorganic surface displayed important properties to act as sequestrating agents for metals in aqueous and non-aqueous solutions. The large variety of basic centres anchored on organic molecules improve the capacity in adsorbing cations. The increase in adsorption is dependent on the number of basic atoms disposed on the pendant molecules on the surface. The combination of acidic and basicity properties favours the selectivity, such is exemplified by the thiol modified silicas towards mercury (II) cations.
Resumo:
For economical and ecological reasons, synthetic chemists are confronted with the increasing obligation of optimizing their synthetic methods. Maximizing efficiency and minimizing costs in the production of molecules and macromolecules constitutes, therefore, one of the most exciting challenges of synthetic chemistry. The ideal synthesis should produce the desired product in 100% yield and selectivity, in a safe and environmentally acceptable process. In this highlight the concepts of atom economy, molecular engineering and biphasic organometallic catalysis, which address these issues at the molecular level for the generation of "green" technologies, are introduced and discussed.