126 resultados para first principles
Resumo:
OBJECTIVE: The Prodromal Questionnaire (PQ) is a 92-item self-report screening tool for individuals at ultra-high risk (UHR) to develop psychosis. This study aims to present the translation to Portuguese and preliminary results in UHR and first episode (FE) psychosis in a Portuguese sample. METHODS: The PQ was translated from English to Portuguese by two bilingual researchers from the research program on early psychosis of the Instituto de Psiquiatria HCFMUSP, São Paulo, Brazil (ASAS - "Evaluation and Follow up of Adolescents and Young Adults in São Paulo") and back translated by two other researchers. The study participants (n = 11-) were evaluated through the Portuguese version of the Prodromal Questionnaire (PQ) and SIPS. RESULTS: The individuals at UHR (n = 7) presented a lower score than first episode patients (n = 4). The UHR mean scores and standard deviation on Portuguese version of the PQ were: 13.0 ± 10.0 points on positive symptoms subscale, and FE patients: 33.0 ± 10.0. CONCLUSION: The UHR and FE patients' of this study presented PQ scores similar to the ones found in the literature; what suggests that it is possible to use the PQ in Brazilian help-seeking individuals as a screening tool.
Resumo:
The authors consider the possibility of using color Doppler of the ductus venosus and the measurement of nuchal translucency as a screening test for alterations in fetal cardiac functions in the first trimester of gestation. Review of the literature suggests that the combination of the ultrasonographic measurement of nuchal translucency and Doppler at 10 and 14 weeks of gestation can be effective in detecting certain cardiac abnormalities. This conclusion, however, is preliminary and needs to be further investigated.
Resumo:
PURPOSE: To assess the effects of the elevation of the left ventricular end-diastolic pressure (LVEDP) on the value of the 1st temporal derivative of the ventricular pressure (dP/dt). METHODS: Nineteen anesthetized dogs were studied. The dogs were mechanically ventilated and underwent thoracotomy with parasympathetic nervous system block. The LVEDP was controlled with the use of a perfusion circuit connected to the left atrium and adjusted to the height of a reservoir. The elevation of the LVEDP was achieved by a sudden increase in the height of a reservoir filled with blood. Continuous recordings of the electrocardiogram, the aortic and ventricular pressures and the dP/dt were performed. RESULTS: Elevation of the LVEDP did not result in any variation of the heart rate (167±16.0bpm, before the procedure; 167±15.5bpm, after the procedure). All the other variables assessed, including systolic blood pressure (128±18.3mmHg and 150±21.5mmHg), diastolic blood pressure (98±16.9mmHg and 115±19.8mmHg), LVEDP (5.5±2.49 and 9.3±3.60mmHg), and dP/dt (4,855 ± 1,082 mmHg/s and 5,149±1,242mmHg/s) showed significant increases following the expansion of the ventricular cavity. Although the elevation of the dP/dt was statistically significant, 6 dogs curiously showed a decrease in the values of dP/dt. CONCLUSION: Sudden elevation of the LVEDP resulted in increased values of dP/dt; however, in some dogs, this response was not uniform.
Resumo:
OBJECTIVE - This study compared the early and late results of the use of one single stent with those of the use of multiple stents in patients with lesions longer than 20mm. METHODS - Prospective assessment of patients electively treated with stents, with optimal stent deployment and followed-up for more than 3 months. From February '94 to January '98, 215 patients with lesions >20mm were treated. These patients were divided into 2 groups as follows: Group A - 105 patients (49%) with one stent implanted; Group B - 110 patients (51%) with multiple stents implanted. RESULTS - The mean length of the lesions was 26mm in group A (21-48mm) versus 29mm in group B (21-52mm) (p=0.01). Major complications occurred in one patient (0.9%) in group A (subacute thrombosis, myocardial infarctionand death) and in 2 patients (1.8%) in group B (one emergency surgery and one myocardial infarction) (p=NS). The results of the late follow-up period (>6 months) were similar for both groups (group A = 82% vs group B = 76%; p=NS), and we observed an event-free survical in 89% of the patients in group A and in 91% of the patients in group B (p=NS). Angina (group A = 11% vs group B = 7%) and lesion revascularization (group A = 5% vs group B = 6%; p=NS) also occurred in a similar percentage. No infarction or death was observed in the late follow-up period; restenosis was identified in 33% and 29% of the patients in groups A and B, respectively (p=NS). CONCLUSION - The results obtained using one stent and using multiple stents were similar; the greater cost-effectiveness of one stent implantation, however, seems to make this strategy the first choice.
Resumo:
OBJECTIVE: To assess the association between cardiovascular risk factors and acute myocardial infarction as the first manifestation of ischemic heart disease, correlating them with coronary angiographic findings. METHODS: We carried out a cross-sectional study of 104 patients with previous acute myocardial infarction, who were divided into 2 groups according to the presence or absence of angina prior to acute myocardial infarction. We assessed the presence of angina preceding acute myocardial infarction and risk factors, such as age >55 years, male sex, smoking, systemic arterial hypertension, lipid profile, diabetes mellitus, obesity, sedentary lifestyle, and familial history of ischemic heart disease. On coronary angiography, the severity of coronary heart disease and presence of left ventricular hypertrophy were assessed. RESULTS: Of the 104 patients studied, 72.1% were males, 90.4% were white, 73.1% were older than 55 years, and 53.8% were hypertensive. Acute myocardial infarction was the first manifestation of ischemic heart disease in 49% of the patients. The associated risk factors were systemic arterial hypertension (RR=0.19; 95% CI=0.06-0.59; P=0.04) and left ventricular hypertrophy (RR=0.27; 95% CI=0,.8-0.88; P=0.03). The remaining risk factors were not statistically significant. CONCLUSION: Prevalence of acute myocardial infarction as the first manifestation of ischemic heart disease is high, approximately 50%. Hypertensive individuals more frequently have symptoms preceding acute myocardial infarction, probably due to ventricular hypertrophy associated with high blood pressure levels.
Resumo:
OBJECTIVE: To assess the prognostic value of Technetium-99m-labeled single-photon emission computerized tomography (SPECT) in the follow-up of patients who had undergone their first myocardial revascularization. METHODS: We carried out a retrospective study of 280 revascularized patients undergoing myocardial scintigraphy under stress (exercise or pharmacological stress with dipyridamole) and at rest according to a 2-day protocol. A set of clinical, stress electrocardiographic and scintigraphic variables was assessed. Cardiac events were classified as "major" (death, infarction, unstable angina) and "any" (major event or coronary angioplasty or new myocardial revascularization surgery). RESULTS: Thirty-six major events occurred as follows: 3 deaths, 11 infarctions, and 22 unstable anginas. In regard to any event, 22 angioplasties and 7 new surgeries occurred in addition to major events, resulting a total of 65 events. The sensitivity of scintigraphy in prognosticating a major event or any event was, respectively, 55% and 58%, showing a negative predictive value of 90% and 83%, respectively. Diabetes mellitus, inconclusive stress electrocardiography, and a scintigraphic visualization of left ventricular enlargement were significant variables for the occurrence of a major event. On multivariate analysis, abnormal myocardial scintigraphy was a predictor of any event. CONCLUSION: Myocardial perfusion tomography with Technetium-99m may be used to identify high-risk patients after their first myocardial revascularization surgery.
Resumo:
Background: The importance of measuring blood pressure before morning micturition and in the afternoon, while working, is yet to be established in relation to the accuracy of home blood pressure monitoring (HBPM). Objective: To compare two HBPM protocols, considering 24-hour ambulatory blood pressure monitoring (wakefulness ABPM) as gold-standard and measurements taken before morning micturition (BM) and in the afternoon (AM), for the best diagnosis of systemic arterial hypertension (SAH), and their association with prognostic markers. Methods: After undergoing 24-hour wakefulness ABPM, 158 participants (84 women) were randomized for 3- or 5-day HBPM. Two variations of the 3-day protocol were considered: with measurements taken before morning micturition and in the afternoon (BM+AM); and with post-morning-micturition and evening measurements (PM+EM). All patients underwent echocardiography (for left ventricular hypertrophy - LVH) and urinary albumin measurement (for microalbuminuria - MAU). Result: Kappa statistic for the diagnosis of SAH between wakefulness-ABPM and standard 3-day HBPM, 3-day HBPM (BM+AM) and (PM+EM), and 5-day HBPM were 0.660, 0.638, 0.348 and 0.387, respectively. The values of sensitivity of (BM+AM) versus (PM+EM) were 82.6% × 71%, respectively, and of specificity, 84.8% × 74%, respectively. The positive and negative predictive values were 69.1% × 40% and 92.2% × 91.2%, respectively. The comparisons of intraclass correlations for the diagnosis of LVH and MAU between (BM+AM) and (PM+EM) were 0.782 × 0.474 and 0.511 × 0.276, respectively. Conclusions: The 3 day-HBPM protocol including measurements taken before morning micturition and during work in the afternoon showed the best agreement with SAH diagnosis and the best association with prognostic markers.
Resumo:
Abstract Background: There are sparse data on the performance of different types of drug-eluting stents (DES) in acute and real-life setting. Objective: The aim of the study was to compare the safety and efficacy of first- versus second-generation DES in patients with acute coronary syndromes (ACS). Methods: This all-comer registry enrolled consecutive patients diagnosed with ACS and treated with percutaneous coronary intervention with the implantation of first- or second-generation DES in one-year follow-up. The primary efficacy endpoint was defined as major adverse cardiac and cerebrovascular event (MACCE), a composite of all-cause death, nonfatal myocardial infarction, target-vessel revascularization and stroke. The primary safety outcome was definite stent thrombosis (ST) at one year. Results: From the total of 1916 patients enrolled into the registry, 1328 patients were diagnosed with ACS. Of them, 426 were treated with first- and 902 with second-generation DES. There was no significant difference in the incidence of MACCE between two types of DES at one year. The rate of acute and subacute ST was higher in first- vs. second-generation DES (1.6% vs. 0.1%, p < 0.001, and 1.2% vs. 0.2%, p = 0.025, respectively), but there was no difference regarding late ST (0.7% vs. 0.2%, respectively, p = 0.18) and gastrointestinal bleeding (2.1% vs. 1.1%, p = 0.21). In Cox regression, first-generation DES was an independent predictor for cumulative ST (HR 3.29 [1.30-8.31], p = 0.01). Conclusions: In an all-comer registry of ACS, the one-year rate of MACCE was comparable in groups treated with first- and second-generation DES. The use of first-generation DES was associated with higher rates of acute and subacute ST and was an independent predictor of cumulative ST.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
The bufonid toad Chaunus achavali, a recently described species known only from Uruguay, is recorded for Brazil. This species is morphologically similar to C. ictericus and C. arenarum, and several individuals were labeled in Brazilian scientific collections under these taxa. A lectotype of C. arenarum is designated. Additional field notes on C. achavali and a key for the identification of the species in the Chaunus marinus group are presented.
Resumo:
The only breeding record of Spartonoica maluroides (d'Orbigny & Lafresnaye, 1837) for Brazil is based on the observation of a fledgling in southern Rio Grande do Sul in January 1976. On 7 December 2005 we discovered a nest containing three nestlings at the southeastern end of Lagoa Pequena, municipality of Pelotas, Rio Grande do Sul. The nest was concealed at the base of a cavity in a Spartina densiflora (Poaceae) tussock located at the edge of a saltmarsh. The nest was built of fine pieces of dead Scirpus olneyi (Cyperaceae) and S. densiflora leaves firmly interlaced to the internal leaves of the tussock. Live leaves of S. densiflora lining the cavity comprised a substantial part of the nest's architecture, forming most of its upper lateral walls and roof. The lower section was more elaborate, resembling a deep cup and forming a distinct incubation chamber. Adults reached the nest's interior through an irregular apical opening amidst the leaves. The nest was 244 mm high and 140 mm wide. The incubation chamber had an external diameter of 138.5 mm, an internal diameter of 79.4 mm and was 86 mm deep. It was lined with fine leaves and white plant fibers. Nestlings were five to six days old. A total of 107 neossoptiles restricted to the capital, spinal and alar tracts were recorded in one nestling. The distribution of neossoptiles in the ocular region of S. maluroides forms a distinct pattern which can be typical of Furnariidae and related families. Two adults attended the nest, bringing small insects to the nestlings and removing fecal sacs. We recorded at least 74 visits to the nest during a ca. 6 h period during an afternoon. The average number of visits per hour was 12.8 ± 1.3. An adult bird spent on average 0.7 ± 0.56 minutes inside the nest attending nestlings. The nest remained unattended on average for 3.61 ± 3.13 minutes. The hour of the day had no influence on the amount of time spent by an adult in the nest or away from it. We returned to the area on 15 December 2005 and found the nest abandoned. Observations confirm that S. maluroides is a resident breeder in southern Brazil and that the saltmarshes of the Lagoa do Patos estuary are an important year-round habitat for the species. A nestling and the nest were collected to document the record.
Resumo:
Litargus tetraspilotus LeConte, 1856 was collected feeding on Oidium sp. (Fungi, Ascomycota, Erysiphaceae) associated with fruit trees. This is the first time L. tetraspilotus is recorded in Brazil, totaling three species of Mycetophagidae for this country. This study aims to provide a complementary description of this species based on new characters and to present information on its life cycle under laboratory conditions and fluctuation in population in the field. During the period of inventories between July 2004 and August 2006, about every fifteen days, a total of 565 specimens of L. tetraspilotus were collected, with the highest abundance found on citrus plants, with values differing significantly between the two years. The population levels differed between the seasons; spring had the greatest abundance and autumn the least. There was a significant positive correlation of L. tetraspilotus abundance with rainfall and relative humidity. Mycetophagidae, as well as other mycophagous families of Brazilian coleopterans, are barely studied, warranting further future studies of their bioecology and systematics.
Resumo:
Based onmale and female, Psychoda simillima Tonnoir, 1929 is redescribed, with a discussion of generic and subgeneric classifications. This is the first record for Chile as well as the first description of a female for this species.
Resumo:
The Ilha Grande National Park, Paraná, Brazil, is located in the Upper Paraná River and has characteristics typical of a floodplains. This protected area includes lagoons connected and disconnected to the Paraná River, although the latter also connect during periods of high water level, thus composing a heterogeneous group of lacustrine environments. The enormous potential the flora and fauna diversities are still little known to the region, as can be seen through benthic invertebrates, inclunding bivalves mollusks. The granulometric composition of these floodplain lagoons was formed mainly by mud and very fine sand. Furthermore, organic matter composition was predominantly of fine particulate. The other abiotic factors differed from lagoons located within the island of the park to those located in the left margin of Paraná River. The results demonstrated the importance of abiotic factors such as the physical composition of granulometric texture, organic matter and macrophyte banks, to the establishment of bivalves in these floodplain lagoons. We recorded bivalves of Pisidium (native), Diplodon (native), and Corbicula (invasive). The highest values of Diplodon sp. density were observed at São João/C lake, for Pisidium sterkianum (Pilsbry, 1897) at São João/M lake, and to Jatobá/C lagoon with high density of invasive species Corbicula fluminea (Müller, 1774). This study to obtain conduct the first records of freshwater bivalves in floodplains lagoon in the Ilha Grande National Park, and provides contributions to better understanding the ecology of these mollusks. The recording of native species in the region of Upper Paraná River floodplain after a lomg period without new records, demonstrated the importance of protecting the lagoons of the Ilha Grande National Park as they can be a possible refuge to some species of native freshwater bivalves.