188 resultados para dried
Resumo:
A procedure was developed for determination of 5 sedatives and 14 β-blockers in swine kidney and subsequent analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Three different procedures for extraction were tested, evaluated through recovery studies. The procedure using acetonitrile for extraction and cleanup with freezing at low temperature and dispersive solid phase extraction using 500 mg celite® 545 before the concentration step presented the better results. The dried samples were redissolved with methanol and analyzed using a LC-MS/MS system with electrospray ionization (ESI) operating in positive MRM mode. The recovery values for this procedure were in the 75-88% range. The robustness of the method was tested against small variations. The method was used to analyze carazolol, azaperone and azaperol in collaborative assay, obtaining results close to designed value.
Resumo:
Among other applications, Ipomoea pes-caprae is popularly used to treat jellyfish stings, supporting the development of a product for dermatological use. Hydroethanolic spray-dried extract was chosen for the further development of phytomedicines, and a stability-indicative HPLC-UV method was developed and validated for the determination of isoquercitrin and isochlorogenic acids A, B and C. The method was developed using a C18 column (250 x 4.6 mm, 5 µm) with an acetonitrile:water mobile phase at pH 3.0 in a gradient run. The four constituents and other unidentified components of the extract were appropriately resolved without interference of degradation products after stress tests (acid, alkali, neutral, oxidant, photolysis). The method showed linearity in the isoquercitrin concentration range from 5.0-50.0 µg mL-1, with adequate precision (RSD% < 2.5% for the intra- and inter-day studies), accuracy (recovery of 100.0 ± 2.0%), and robustness. Both the herbal drug and spray-dried extract of I. pes-caprae were subjected to stability studies in accelerated and long-term conditions over four months. The samples maintained their characteristics and marker contents (< 10% of variation).
Resumo:
The global energy scenario is currently a widely discussed topic, with growing concern about the future supplies. Thus, much attention has been dedicated to the utilization of biomass as an energy resource. In this respect, orange peel has become a material of great interest, especially to Brazil, which generates around 9.5 million tons of this waste per year. To this end, the authors studied the kinetics of the thermal processing of dried orange peel in inert and oxidizing atmosphere. The thermodynamic parameters were determined by the Ozawa-Flynn-Wall method for the global process observed during heating from the 25°C up to 800°C. The thermal analysis in air and nitrogen showed 3-2 stages of mass loss, respectively, with approximately 20% residual mass under a nitrogen atmosphere. The increase in the values of activation energy for the conversion points between 20% and 60% for thermal effects in air and nitrogen atmosphere was observed. The activation energy obtained in an oxidizing atmosphere was higher than that obtained under a nitrogen atmosphere. The fourier-transform infrared spectroscopy and X-ray diffraction analysis showed that the material has a high level of complexity with the presence of alkali and alkaline earth groups as well as phosphate, plus substances such as pectin, cellulose and lignin.
Resumo:
Turmeric, obtained from the dried rhizomes of Curcuma longa (Zingiberaceae), is a golden colored material, commonly used around the world for seasoning and coloring food dishes. Since antiquity, turmeric has been widely used in the treatment of several diseases in traditional Chinese and Indian medicine (Ayurveda), where it is also known by other names such as Kanchani (goddess gold) or also Gauri (having a bright and luminous face), a designation stemming from the gilded appearance of the plant material. Curcumin, the main chemical component of turmeric, is responsible both for its properties as dyes as well as its biological activities. This diarylheptanoid was first isolated almost two centuries ago and had its chemical structure determined in 1910 as being diferuloylmethane. Subsequently, more detailed and relevant data were obtained furthering the understanding of structural features of curcumin. The classical methodology for the synthesis of curcumin and other curcuminoids was described in 1960 by Pabon. Subsequently, different variations on this methodology have been developed, culminating with the synthesis of different curcuminoids. Several studies have been published in recent years on the biological activities exhibited by curcumin including its antioxidant, antitumor, anti-inflammatory, antiviral, antibacterial, antifungal, antimalarial and leishmanicidal activities.
Resumo:
Resorcinol-formaldehyde (RF) organic gels have been extensively used to produce carbon aerogels. The organic gel synthesis parameters greatly affect the structure of the resulting aerogel. In this study, the influence of the catalyst quantity on the polymeric solution sol-gel process was investigated. Sodium carbonate was used as a basic catalyst. RF gels were synthesized with a resorcinol to formaldehyde molar ratio of 0.5, a resorcinol to catalyst (R/C) molar ratio equal to 50 or 300, and a resorcinol to solvent ratio of 0.1 g mL-1. The sol-gel process was evaluated in situ by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor and measurements of the kinematic viscosity. The techniques showed the evolution of the sol-gel process, and the results showed that the lower catalyst quantity induced a higher gel point, with a lower viscosity at the gel point. Differential scanning calorimetry was used to investigate the thermal behavior of the RF dried gel, and results showed that the exothermic event related to the curing process was shifted to higher temperatures for solutions containing higher R/C ratios.
Resumo:
The addition of organic residues to soil is an option to control some soil-borne diseases. Benzaldehyde and powders of kudzu (Pueraria lobata), velvetbean (Mucuna deeringiana), and pine-bark (Pinus elliottii and P. taeda) added to soil could reduce certain soil-borne diseases. This study evaluated the effects of benzaldehyde and the dried powders of kudzu, velvetbean, and pine-bark as soil amendments on germination and formation of sclerotia, on mycelial growth of Sclerotium rolfsii, on plant survival, and disease incidence. The data showed that high amounts of benzaldehyde (0.4 ml kg-1 of soil) and velvetbean (100 g kg-1) inhibited S. rolfsii mycelial growth and sclerotium germination. However, low amounts of benzaldehyde (0.1 ml kg-1), kudzu (25 g kg-1), and pine-bark (25 g kg-1) stimulated mycelial growth and sclerotium germination. Kudzu (25-100 g kg-1) and velvetbean (25-100 g kg-1) inhibited the formation of sclerotia. Nevertheless, benzaldehyde at 0.2 and 0.4 ml kg-1 stimulated the formation of sclerotia. Kudzu (50 and 100 g kg-1) and pine-bark (50 g kg-1) favored the colonization of sclerotia by Trichoderma sp. The numbers of soybean (Glycine max) plants were higher and diseased plants were lower than the non-amend soil in the following treatments: kudzu (50 and 100 g kg-1), velvetbean (50 and 100 g kg-1), and pine-bark (50 g kg-1). Disease severity on tomato (Lycopersicon esculentum) plants was low in soil treated with kudzu or velvetbean (30 and 35 g kg-1) and pine-bark (35 g kg-1). Dried powders of kudzu, velvetbean, or pine-bark added to soil can reduce disease by reducing pathogen inoculum.
Resumo:
Southern blight (Sclerotium rolfsii) of soybean (Glycine max) is an important disease throughout the world. Some soil amendments can reduce disease levels by improving soil microbial activity. The main goals of this study were to investigate the effects of soil amendments such as dried powders of kudzu (Pueraria lobata), velvetbean (Mucuna deeringiana), and pine bark (Pinus taeda), on soil microbial population and disease caused by S. rolfsii on soybean. Pine bark, velvetbean (mucuna) and kudzu (25 g kg-1) added to soil were effective in reducing disease incidence [non-amended (NA) ~ 39%; amended (A) ~ 2 to 11%)]. Bacillus megaterium was the bacteria most frequently isolated in soils with velvetbean or kudzu (NA ~ log 5.7 CFU g-1 of dried soil; A ~ log 6.2). Soils with velvetbean and kudzu stimulated increase in population of Enterobacter aerogenes (NA ~ log 3; A ~ log 5.1-5.8). Pseudomonas putida population was higher in A than in NA (NA ~ log 4; A ~ log 5.5), and was negatively correlated (r = -0.83, P = 1%) to disease incidence. Soil amended with kudzu and pine bark stimulated increases in populations of Trichoderma koningii (NA ~ log 1.6; A ~ log 2.9) and Penicillium citreonigrum (NA ~ log 1.3; A ~ log 2.6), respectively. Penicillium herquei soil population increased with addition of kudzu (NA ~ log 1.2; A, ~ log 2.5). These microorganisms are antagonists of soil-borne pathogens. Powders of velvetbean, kudzu, and pine bark can increase antagonistic population in soil and reduce disease.
Resumo:
Herbicides such as trifluralin, simazine, atrazine, metribuzin and metolachlor are used in Brazilian agriculture. The efficiency of a small scale method for determination of these herbicides and two degradation products (deisopropylatrazine and deethylatrazine) in soil samples was evaluated. The compounds were extracted from soil samples (5 g) with 20 ml of ethyl acetate in a mechanical shaker for 50 min. Following the extraction, the supernatant was dried through anhydrous sodium sulphate, concentrated and analysed by high resolution gas chromatography (HRGC) with thermionic specific detection (TSD). Mean recoveries obtained from soil samples fortified at three different levels ranged from 81 to 115% with relative standard deviation (RSD) values varying from 1.2 to 12.7%. The method detection limits ranged from 0.01 to 0.06 mg kg-1. The methodology was applied using soil samples from farms located near the town of Araraquara, in the State of São Paulo, Brazil.
Resumo:
The current study aims to verify the best method for a rapid and efficient extraction of flavonoids from Alpinia zerumbet. Dried leaves were extracted using distillated water and ethanol 70% by extraction methods of shaking maceration, ultrasonic, microwave and stirring. By the application of TLC and reversed-phase HPLC techniques the rutin and kaempferol-3-O-glucuronide were detected. Ethanol 70% was more efficient for flavonoids extraction than water. No significant yielding variation was verified for ultrasonic, microwave and stirring methods using ethanol 70% (11 to 14%). The relative concentration of rutin and kaempferol-3-O-glucuronide, respectively, was higher by ultrasonic (1.5 and 5.62 mg g-1 dried leaves, respectively) and by microwave (1.0 and 6.64 mg g-1 dried leaves) methods using ethanol. Rapid and simplified extraction proceeding optimize phytochemical work and acquisition of secondary metabolites.
Flavonoids extraction from Alpinia zerumbet (Pers.) Burtt et Smith leaves using different procedures
Resumo:
The current study aims to verify the best method for a rapid and efficient extraction of flavonoids from Alpinia zerumbet. Dried leaves were extracted using distillated water and ethanol 70% by extraction methods of shaking maceration, ultrasonic, microwave and stirring. By the application of TLC and reversed-phase HPLC techniques the rutin and kaempferol-3-O-glucuronide were detected. Ethanol 70% was more efficient for flavonoids extraction than water. No significant yielding variation was verified for ultrasonic, microwave and stirring methods using ethanol 70% (11 to 14%). Relative concentration of rutin and kaempferol-3-O-glucuronide, respectively, was higher by ultrasonic (1.5 and 5.62 mg g-1 dried leaves) and by microwave (1.0 and 6.64 mg g-1 dried leaves) methods using 70% ethanol. Rapid and simplified extraction proceeding optimize phytochemical work and acquisition of secondary metabolites.
Resumo:
Litter fall consists of all organic material deposited on the forest floor, being of extremely important for the structure and maintenance of the ecosystem through nutrient cycling. This study aimed to evaluate the production and decomposition of litter fall in a secondary Atlantic forest fragment of secondary Atlantic Forest, at the Guarapiranga Ecological Park, in São Paulo, SP. The litter samples were taken monthly from May 2012 to May 2013. To assess the contribution of litter fall forty collectors were installed randomly within an area of 0.5 ha. The collected material was sent to the laboratory to be dried at 65 °C for 72 hours, being subsequently separated into fractions of leaves, twigs, reproductive parts and miscellaneous, and weighed to obtain the dry biomass. Litterbags were placed and tied close to the collectors to estimate the decomposition rate in order to evaluate the loss of dry biomass at 30, 60, 90, 120 and 150 days. After collection, the material was sent to the laboratory to be dried and weighed again. Total litter fall throughout the year reached 5.7 Mg.ha-1.yr-1 and the major amount of the material was collected from September till March. Leaves had the major contribution for total litter fall (72%), followed by twigs (14%), reproductive parts (11%) and miscellaneous (3%). Reproductive parts had a peak during the wet season. Positive correlation was observed between total litter and precipitation, temperature and radiation (r = 0.66, p<0.05; r = 0.76, p<0.05; r = 0.58, p<0.05, respectively). The multiple regression showed that precipitation and radiation contributed significantly to litter fall production. Decomposition rate was in the interval expected for secondary tropical forest and was correlated to rainfall. It was concluded that this fragment of secondary forest showed a seasonality effect driven mainly by precipitation and radiation, both important components of foliage renewal for the plant community and that decomposition was in an intermediate rate.
Resumo:
ABSTRACT The present study aimed to analyze the production and decomposition of litterfall in a fragment of secondary Atlantic forest in the region of Ibiúna, SP, from April 2012 to March 2013. The litterfall production was estimated by 30 collectors distributed randomly in an area of 1000 m2, where the deposited material was collected every 15 days. The decomposition of litterfall was estimated through the mass loss in the period of study. After collecting, the material was dried in an oven at 65 °C for seven days to achieve a constant weight. The decomposition constant k was obteined according to Shanks and Oslon (1961) and the time for 50% and 95% of decomposition was estimated. It was found a higher litterfall production in October (454.3 kg ha-1) and lower production in July (164.9 kg ha-1), with a total amount produced of 3.5 Mg ha-1 year-1. A delay of one month in the precipitation and relative humidity showed great influence in the litter production during the study. The decomposition rate (k) was 3.1 and the time to decompose 50% of the material was estimated in 2 and ½ months and for 95% of the litterfall the time was estimated in 11 and ½ months. The production and decomposition values of this work are within the range found in other sites of secondary tropical forests.
Resumo:
ABSTRACT The Paratudo (Tabebuia aurea) is a species occurring in the Pantanal of Miranda, Mato Grosso do Sul, Brazil, an area characterized by seasonal flooding. To evaluate the tolerance of this plant to flooding, plants aged four months were grown in flooded soil and in non-flooded soil (control group). Stomatal conductance, transpiration and CO2 assimilation were measured during the stress (48 days) and recovery (11 days) period, totalling 59 days. The values of stomatal conductance of the control group and stressed plants at the beginning of the flooded were 0.33 mol m-2s-1 and reached 0.02 mol m-2 s-1 (46th day) at the end of this event. For the transpiration parameter, the initial rate was 3.1 mol m s-1, and the final rate reached 0.2 or 0.3 mol m-2 s-1 (47/48 th day). The initial photosynthesis rate was 8.9 mmol m-2s-1 and oscillated after the sixth day, and the rate reached zero on the 48th day. When the photosynthesis rate reached zero, the potted plants were dried, and the rate was analyzed (11th day). The following values were obtained for dried plants: stomatal conductance = 0.26 mol m-2 s-1, transpiration rate = 2.5 mol m-2 s-1 and photosynthesis rate = 7.8 mmol m-2 s-1. Flooded soil reduced photosynthesis and stomatal conductance, leading to the hypertrophy of the lenticels. These parameters recovered and after this period, and plants exhibited tolerance to flooding stress by reducing their physiological activities.
Application of simulated annealing in simulation and optimization of drying process of Zea mays malt
Resumo:
Kinetic simulation and drying process optimization of corn malt by Simulated Annealing (SA) for estimation of temperature and time parameters in order to preserve maximum amylase activity in the obtained product are presented here. Germinated corn seeds were dried at 54-76 °C in a convective dryer, with occasional measurement of moisture content and enzymatic activity. The experimental data obtained were submitted to modeling. Simulation and optimization of the drying process were made by using the SA method, a randomized improvement algorithm, analogous to the simulated annealing process. Results showed that seeds were best dried between 3h and 5h. Among the models used in this work, the kinetic model of water diffusion into corn seeds showed the best fitting. Drying temperature and time showed a square influence on the enzymatic activity. Optimization through SA showed the best condition at 54 ºC and between 5.6h and 6.4h of drying. Values of specific activity in the corn malt were found between 5.26±0.06 SKB/mg and 15.69±0,10% of remaining moisture.
Resumo:
Dryers heated by solar energy have been constructed and used in drying whole and half jack fruit almonds. The samples were dried during the day in direct sun and in the conventional solar dryer prepared for this purpose. Another piece of equipment was built for reception and accumulation of sun energy in a body of water, which was used as a heat source for night drying. The drying with the sun energy was compared with artificial drying. The jack fruit almonds were dried whole, half, with pellicle and without it. The storage of solar energy in water was technically viable for use in night drying. The drying by combining solar dryers in the day and night periods were completed in approximately 35 hours, and were equivalent to artificial drying between 40ºC and 70ºC. Almond cut in half and the pellicle removed reduced the drying time.