110 resultados para control of uncertain nonlinear systems
Resumo:
The present study evaluated the anti-inflammatory and analgesic properties of Agave sisalana Perrine in classic models of inflammation and pain. The hexanic fraction of A. sisalana (HFAS) was obtained by acid hydrolysis followed by hexanic reflux. Anti-inflammatory properties were examined in three acute mouse models (xylene ear oedema, hind paw oedema and pleurisy) and a chronic mouse model (granuloma cotton pellet). The antinociceptive potential was evaluated in chemical (acetic-acid) and thermal (tail-flick and hot-plate test) models of pain. When given orally, HFAS (5, 10, 25 and 50 mg/kg) reduced ear oedema (p < 0.0001; 52%, 71%, 62% and 42%, respectively). HFAS also reduced hind paw oedema at doses of 10 mg/kg and 25 mg/kg (p < 0.05; 42% and 58%, respectively) and pleurisy at doses of 10 mg/kg and 25 mg/kg (41% and 50%, respectively). In a chronic model, HFAS reduced inflammation by 46% and 58% at doses of 10 mg/kg and 25 mg/kg, respectively. Moreover, this fraction showed analgesic properties against the abdominal writhing in an acetic acid model (at doses of 5-25 mg/kg) with inhibitory rates of 24%, 54% and 48%. The HFAS also showed an increased latency time in the hot-plate (23% and 28%) and tail-flick tests (61% and 66%) for the 25 mg/kg and 50 mg/kg doses, respectively. These results suggest that HFAS has anti-inflammatory and analgesic properties.
Resumo:
As an evaluation scheme, we propose certifying for “control”, as alternative to “interruption”, of Chagas disease transmission by native vectors, to project a more achievable and measurable goal and sharing good practices through an “open online platform” rather than “formal certification” to make the key knowledge more accumulable and accessible.
Resumo:
Chagas disease is maintained in nature through the interchange of three cycles: the wild, peridomestic and domestic cycles. The wild cycle, which is enzootic, has existed for millions of years maintained between triatomines and wild mammals. Human infection was only detected in mummies from 4,000-9,000 years ago, before the discovery of the disease by Carlos Chagas in 1909. With the beginning of deforestation in the Americas, two-three centuries ago for the expansion of agriculture and livestock rearing, wild mammals, which had been the food source for triatomines, were removed and new food sources started to appear in peridomestic areas: chicken coops, corrals and pigsties. Some accidental human cases could also have occurred prior to the triatomines in peridomestic areas. Thus, triatomines progressively penetrated households and formed the domestic cycle of Chagas disease. A new epidemiological, economic and social problem has been created through the globalisation of Chagas disease, due to legal and illegal migration of individuals infected by Trypanosoma cruzi or presenting Chagas disease in its varied clinical forms, from endemic countries in Latin America to non-endemic countries in North America, Europe, Asia and Oceania, particularly to the United States of America and Spain. The main objective of the present paper was to present a general view of the interchanges between the wild, peridomestic and domestic cycles of the disease, the development of T. cruzi among triatomine, their domiciliation and control initiatives, the characteristics of the disease in countries in the Americas and the problem of migration to non-endemic countries.
Resumo:
Chagas disease or American trypanosomiasis is, together with geohelminths, the neglected disease that causes more loss of years of healthy life due to disability in Latin America. Chagas disease, as determined by the factors and determinants, shows that different contexts require different actions, preventing new cases or reducing the burden of disease. Control strategies must combine two general courses of action including prevention of transmission to prevent the occurrence of new cases (these measures are cost effective), as well as opportune diagnosis and treatment of infected individuals in order to prevent the clinical evolution of the disease and to allow them to recuperate their health. All actions should be implemented as fully as possible and with an integrated way, to maximise the impact. Chagas disease cannot be eradicated due because of the demonstrated existence of infected wild triatomines in permanent contact with domestic cycles and it contributes to the occurrence of at least few new cases. However, it is possible to interrupt the transmission ofTrypanosoma cruziin a large territory and to eliminate Chagas disease as a public health problem with a dramatic reduction of burden of the disease.
Resumo:
We refer to Oswaldo Cruz’s reports dating from 1913 about the necessities of a healthcare system for the Brazilian Amazon Region and about the journey of Carlos Chagas to 27 locations in this region and the measures that would need to be adopted. We discuss the risks of endemicity of Chagas disease in the Amazon Region. We recommend that epidemiological surveillance of Chagas disease in the Brazilian Amazon Region and Pan-Amazon region should be implemented through continuous monitoring of the human population that lives in the area, their housing, the environment and the presence of triatomines. The monitoring should be performed with periodic seroepidemiological surveys, semi-annual visits to homes by health agents and the training of malaria microscopists and healthcare technicians to identify Trypanosoma cruzi from patients’ samples and T. cruzi infection rates among the triatomines caught. We recommend health promotion and control of Chagas disease through public health policies, especially through sanitary education regarding the risk factors for Chagas disease. Finally, we propose a healthcare system through base hospitals, intermediate-level units in the areas of the Brazilian Amazon Region and air transportation, considering the distances to be covered for medical care.