120 resultados para chloride environment
Resumo:
Currents mediated by calcium-activated chloride channels (CaCCs), observed for the first time in Xenopus oocytes, have been recorded in many cells and tissues ranging from different types of neurons to epithelial and muscle cells. CaCCs play a role in the regulation of excitability in neurons including sensory receptors. In addition, they are crucial mediators of chloride movements in epithelial cells where their activity regulates electrolyte and fluid transport. The roles of CaCCs, particularly in epithelia, are briefly reviewed with emphasis on their function in secretory epithelia. The recent identification by three independent groups, using different strategies, of TMEM16A as the molecular counterpart of the CaCC is discussed. TMEM16A is part of a family that has 10 other members in mice. The discovery of the potential TMEM16 anion channel activity opens the way for the molecular investigation of the role of these anion channels in specific cells and in organ physiology and pathophysiology. The identification of TMEM16A protein as a CaCC chloride channel molecule represents a great triumph of scientific perseverance and ingenuity. The varied approaches used by the three independent research groups also augur well for the solidity of the discovery.
Effect of chloride dialysate concentration on metabolic acidosis in aintenance hemodialysis patients
Resumo:
Hyperchloremia is one of the multiple etiologies of metabolic acidosis in hemodialysis (HD) patients. The aim of the present study was to determine the influence of chloride dialysate on metabolic acidosis control in this population. We enrolled 30 patients in maintenance HD program with a standard base excess (SBE) ≤2 mEq/L and urine output of less than 100 mL/24 h. The patients underwent dialysis three times per week with a chloride dialysate concentration of 111 mEq/L for 4 weeks, and thereafter with a chloride dialysate concentration of 107 mEq/L for the next 4 weeks. Arterial blood was drawn immediately before the second dialysis session of the week at the end of each phase, and the Stewart physicochemical approach was applied. The strong ion gap (SIG) decreased (from 7.5 ± 2.0 to 6.2 ± 1.9 mEq/L, P = 0.006) and the standard base excess (SBE) increased after the use of 107 mEq/L chloride dialysate (from -6.64 ± 1.7 to -4.73 ± 1.9 mEq/L, P < 0.0001). ∆SBE was inversely correlated with ∆SIG during the phases of the study (Pearson r = -0.684, P < 0.0001) and there was no correlation with ∆chloride. When we applied the Stewart model, we demonstrated that the lower concentration of chloride dialysate interfered with the control of metabolic acidosis in HD patients, surprisingly, through the effect on unmeasured anions.
Resumo:
Antibacterial monomers incorporated in dentin bonding systems may have toxic effects on the pulp. Thus, the cytotoxicity of antibacterial monomers and its underlying mechanisms must be elucidated to improve the safety of antibacterial monomer application. The influence of an antibacterial monomer, methacryloxylethyl cetyl ammonium chloride (DMAE-CB), on the vitality of L929 mouse fibroblasts was tested using MTT assay. Cell cycle progression was studied using flow cytometry. Production of intracellular reactive oxygen species (ROS) after DMAE-CB treatment was measured using 2,7-dichlorodihydrofluorescein diacetate staining and flow cytometry analysis. Loss of mitochondrial membrane potential, disturbance of Bcl-2 and Bax expression, as well as release of cytochrome C were also measured using flow cytometry analysis or Western blot to explore the possible involvement of the mitochondrial-related apoptotic pathway. DMAE-CB elicited cell death in a dose-dependent manner and more than 50% of cells were killed after treatment with 30 µM of the monomer. Both necrosis and apoptosis were observed. DMAE-CB also induced G1- and G2-phase arrest. Increased levels of intracellular ROS were observed after 1 h and this overproduction was further enhanced by 6-h treatment with the monomer. DMAE-CB may cause apoptosis by disturbing the expression of Bcl-2 and Bax, reducing the mitochondrial potential and inducing release of cytochrome C. Taken together, these findings suggest that the toxicity of the antibacterial monomer DMAE-CB is associated with ROS production, mitochondrial dysfunction, cell cycle disturbance, and cell apoptosis/necrosis.
Resumo:
There is evidence that brain temperature (Tbrain) provides a more sensitive index than other core body temperatures in determining physical performance. However, no study has addressed whether the association between performance and increases in Tbrain in a temperate environment is dependent upon exercise intensity, and this was the primary aim of the present study. Adult male Wistar rats were subjected to constant exercise at three different speeds (18, 21, and 24 m/min) until the onset of volitional fatigue. Tbrain was continuously measured by a thermistor inserted through a brain guide cannula. Exercise induced a speed-dependent increase in Tbrain, with the fastest speed associated with a higher rate of Tbrain increase. Rats subjected to constant exercise had similar Tbrain values at the time of fatigue, although a pronounced individual variability was observed (38.7-41.7°C). There were negative correlations between the rate of Tbrain increase and performance for all speeds that were studied. These results indicate that performance during constant exercise is negatively associated with the increase in Tbrain, particularly with its rate of increase. We then investigated how an incremental-speed protocol affected the association between the increase in Tbrain and performance. At volitional fatigue, Tbrain was lower during incremental exercise compared with the Tbrain resulting from constant exercise (39.3±0.3 vs 40.3±0.1°C; P<0.05), and no association between the rate of Tbrain increase and performance was observed. These findings suggest that the influence of Tbrain on performance under temperate conditions is dependent on exercise protocol.
Resumo:
Individuals with systemic arterial hypertension have a higher risk of heat-related complications. Thus, the aim of this study was to examine the thermoregulatory responses of hypertensive subjects during recovery from moderate-intensity exercise performed in the heat. A total of eight essential hypertensive (H) and eight normotensive (N) male subjects (age=46.5±1.3 and 45.6±1.4 years, body mass index=25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure=98.0±2.8 and 86.0±2.3 mmHg, respectively) rested for 30 min, performed 1 h of treadmill exercise at 50% of maximal oxygen consumption, and rested for 1 h after exercise in an environmental chamber at 38°C and 60% relative humidity. Skin and core temperatures were measured to calculate heat exchange parameters. Mean arterial pressure was higher in the hypertensive than in the normotensive subjects throughout the experiment (P<0.05, unpaired t-test). The hypertensive subjects stored less heat (H=-24.23±3.99 W·m−2vs N=-13.63±2.24 W·m−2, P=0.03, unpaired t-test), experienced greater variations in body temperature (H=-0.62±0.05°C vsN=-0.35±0.12°C, P=0.03, unpaired t-test), and had more evaporated sweat (H=-106.1±4.59 W·m−2vs N=-91.15±3.24 W·m−2, P=0.01, unpaired t-test) than the normotensive subjects during the period of recovery from exercise. In conclusion, essential hypertensive subjects showed greater sweat evaporation and increased heat dissipation and body cooling relative to normotensive subjects during recovery from moderate-intensity exercise performed in hot conditions.
Resumo:
The objectives of this study were to understand how genotype, storage time, and storage conditions affect cooking time of beans and to indicate storage techniques that do not affect the cooking time. The grains were subjected to five different storage periods and six different storage conditions. The cooking time was estimated using the Mattson Cooker. The data were subjected to analysis of variance and a subsequent adjustment of simple linear regression for deployment of the interactions between the factors. Contrasts were used to determine the best levels of the factor storage condition. Genotype did not impact cooking time when the storage time and storage conditions were considered. Time and storage conditions affect the cooking time of beans in a dependent manner, but time of storage had the biggest influence. The best conditions for long-term storage of beans ensuring a smaller increase in cooking time is plastic storage at low temperatures. Thus, plastic freezer storage is a practical alternative for consumers.
Resumo:
The objective of this study was to evaluate the physicochemical and microbiological parameters of pork meat submitted to dry salting. Sodium chloride (NaCl) was added at levels of 0%, 2.5%, 5%, 7.5% or 10% by the meat weight. Dry salting technique was used, which consists of rubbing the sodium chloride manually, followed by a rest period. The data were submitted to analysis of variance using a completely randomized experimental design. The means were compared by Duncan test at 5%. The salting process reduced (P < 0.05) humidity and water activity, and it increased (P < 0.05) ash, chloride, palmitic acid, and water holding capacity levels compared to those of the control. Luminosity (L*) was lower (P < 0.05) in the control, and a* color was more intense in samples with 2.5% NaCl. Cooking loss was lower (P < 0.05) in the samples salted with 5% and 10% NaCl, and similarity was observed between the levels 0 and 7.5% salt. The treatments with levels 0% and 2.5% NaCl had higher mesophilic counts. The other microbiological parameters were within limits established by law. Therefore, salting with 5% NaCl can be used in pork meat in order to maintain the physicochemical and microbiological characteristics of the final product.
Resumo:
The impact of sodium chloride reduction and its substitution for micronized salt on consumer acceptance of turkey ham was investigated. Five formulations - F1 (control - 2.0% NaCl), F2 (1.7% NaCl), F3 (1.4% NaCl), F4 (1.7% micronized NaCl), and F5 (1.4% micronized NaCl) - were evaluated with respect to sodium chloride content and by consumers using a nine-point hedonic scale for overall acceptability and CATA (check-all-that-apply) using 24 sensory descriptors. Trained panelists characterized the products using the flash profiling technique. Reductions in the salt content by up to 30% did not affect the overall acceptability of the samples by the consumers. However, the consumers characterized the formulations with lower salt content as "less salty and less seasoned" in comparison to the contents in the control. Products containing 1.7% NaCl were considered very similar to the control. The results obtained indicate that it is possible to reduce NaCl content by 30% without affecting consumer acceptance of the product. The use of micronized salt did not affect the sensory characteristics when compared with those of formulations containing the same level of sodium chloride indicating that micronized salt does not influence perception of salt.
Resumo:
Genotype (G), environment (E) and their interaction (GEI) play an important role in the final expression of grain yield and quality attributes. A multi-environment trial in wheat was conducted to evaluate the magnitude of G, E and GEI effects on grain yield and quality of wheat genotypes under the three rainfed locations (hereafter environment) of Central Anatolian Plateau of Turkey, during the 2012-2013 cropping season. Grain yield (GY) and analyses of test weight (TW), protein content (PC), wet gluten content (WGC), grain hardness (GH), thousand kernel weight (TKW) and Zeleny sedimentation volume (ZSV) were determined. Allelic variations of high and low molecular weight glutenin subunits (HMW-GS and LMW-GS) and 1B/1R translocation were determined in all genotypes evaluated. Both HMW-Glu-1, 17+18, 5+10 and LMW-Glu-3 b, b, b corresponded to genotypes possessing medium to good quality attributes. Large variability was found among most of the quality attributes evaluated; wider ranges of quality traits were observed in the environments than among the genotypes. The importance of the growing environment effects on grain quality was proved, suggesting that breeders' quality objectives should be adapted to the targeted environments.
Resumo:
Iron is an essential element for nearly all living organisms, and its deficiency is the most common form of malnutrition in the world. The organic forms of trace elements are considered more bioavailable than the inorganic forms. Although Saccharomyces cerevisiae can enrich metal elements and convert inorganic iron to organic species, its tolerability and transforming capacity are limited. The aim of this study was to screen higher biomass and other iron-enriched fungi strains besides Saccharomyces cerevisiae from the natural environment. A PDA medium containing 800 μg/mL iron was used for initial screening. Fifty strains that tolerated high iron concentration were isolated from the natural environment, and only one strain, No.BY1109, grew well at Fe (II) concentration of 10,000μg/ml. According to morphological characterization, 18S rDNA sequence analysis, and biophysical and biochemical characterization, the strain No.BY1109 was identified as Rhodotorula. The iron content of No.BY1109 (10 mg Fe/g dry cell) was determined using atomic absorption spectrometry. The results of distribution of iron in the cells showed that iron ion was mainly chelated in the cell walls and vacuoles. The bioavailability in rats confirmed that strain No.BY1109 had higher absorption efficiency than that of ferrous sulfate after single dose oral administration. The present study introduces new iron supplements, and it is a basis for finding new iron supplements from natural environment.
Resumo:
Red wines from different countries have been assessed in order to determine the influence of terroir and grape variety in their concentration of chloride. Chloride analysis was carried out by Laboratório de Bebidas de Origem Vegetal do Espírito Santo (Labeves), using the potentiometric method, in which the dosing is directly applied to the sample with an Ag/AgCl electrode. Data were collected to establish the level of chloride, as presented in the analysis reports issued by Labeves, and to serve as a wine categorization database, according to grape variety and country of origin. Australia and Argentina presented the highest levels of chloride and the wines made from the Syrah variety presented the highest concentration of such ion. We have, therefore, found that terroir and grape variety do have an influence over the concentration of chloride in red wines.
Resumo:
Calcium chloride is widely used in industries as a firming agent, and also to extend shelf-life of vegetables. The aim of this study was to determine, the effect of different doses of calcium chloride on biochemical and color properties of fresh-cut green bean. Fresh-cut green beans were dipped for 90 seconds in 0.5%, 1%, 2% and 3% solution of calcium chloride at 25°C. The fresh-cut green bean samples were packaged in polystyrene foam dishes, wrapped with stretch film and stored in a cold room at 5±1°C temperature and 85-90% RH. Calcium chloride treatments did not retain the green color of samples. Whiteness index, browning index and total color difference (ΔE) values of CaCl2 treated samples were high. Saturation index and hue angle were low compared to the control, especially at higher doses of CaCl2. Polyphenol oxidase (PPO) enzyme activity in samples treated with CaCl2 at 3% doses, was low at the 7th days of storage than with other treatments. Fructose and sucrose content of samples increased in all treatment groups whereas glucose level decreased during the first 4th days of storage.
Resumo:
Abstract Sodium chloride in meat products provides microbiological stability and desirable technological and sensory effects. Therefore, the reduction of this ingredient is a challenge for the meat industry. The objective of this study was to evaluate the physicochemical and sensory characteristics of ready-to-eat sliced frozen roast beef with partial replacement of sodium chloride by a commercial additive mostly composed of potassium chloride. The analyses performed were chemical composition, cooking yield and post defrosting loss, microbiological evaluation and sensory analysis. There was higher moisture content (p < 0.05) in the control treatment (without the presence of the replacement additive) and all treatments were not different (p ≥ 0.05) in the cooking yield and in post-defrosting loss. The results of microbiological analysis are according to Brazilian Legislation. The sensory evaluation showed no difference between the control treatment and the T1 treatment (with the reduction of 35% of NaCl), while the T2 treatment (with reduction of 70% of NaCl) had the lowest average values in all attributes. The study showed that the reduction of 35% NaCl for commercial additive, mostly composed of potassium chloride, in roast beef is feasible since no changes were observed in sensory and technological characteristics evaluated.
Resumo:
Breeding soybean for high seed quality is an important approach for developing cultivars for tropical regions, and the lignin content in the seed coat is one of the screening parameters for this trait. Considering that many breeding lines are evaluated in each growing season using the presently recommended method for lignin determination, a long period is required for the evaluation of the whole breeding program. This time limitation may influence lignin content assessment, if lignin is degraded during storage. This research reported was designed to determine whether lignin was degraded in the seed coat of soybean seed cultivars stored for one year in a controlled environment (10°C temperature and 50% air relative humidity). Seeds of 12 selected soybean cultivars that had a range in seed coat lignin content were evaluated. Seeds were hand harvested just after physiological maturity and evaluated for seed coat lignin content at harvest and after one year of storage in a cold room (10°C and 50% RH). The lignin content in seed coats differed significantly among cultivars in both analyses, but for both results the sequence of cultivar classification and the lignin content values of each cultivar did not change. A regression analysis of lignin content at harvest and after one year of storage indicated a direct relationship between both lignin determinations suggesting no differences between the lignin content of each cultivar due to prolonged storage (r² = 0.98***). This indicates that the lignin determination in the soybean seed coat can be performed over a long time period without any bias due to change in its content.
Resumo:
This study was aimed at evaluating the desiccation sensitivity in seeds of the tree Tapirira obtusa (Benth.) J. D. Mitchell collected from three different environments and subjected to two distinct drying speeds. Seeds were collected from a rocky area, in the "Cerrado", and in a riparian forest area, in the region of municipality of Lavras, State of Minas Gerais. The seeds were subjected to drying with magnesium chloride (slow drying) or silica gel (fast drying), into closed environment, until moisture contents of 40%, 30%, 20% and 10%, considering as control, the percentage of germination at the initial moisture content in each environment, which varied from 47% to 50%. Percentages of germination and normal seedlings as well as germination speed index were assessed. For the three environments studied, there was no effect of slow drying on seed germination. Seeds from area of Cerrado, however, have shown a slight reduction on germination when subjected to fast drying. Oppositely, seeds from rocky area had germination increased when subjected to fast drying. Seeds from riparian forest area had no reduction on germination percentage, independent of drying speed. Results suggest that seeds of T. obtusa are not sensitive to desiccation.