114 resultados para aristolochic esters
Resumo:
Sugarcane spirit is a drink considered as a national symbol of Brazil. It is produced by large producers and by about 30 thousand small and medium home-distilling producers dispersed throughout the country. The copper originating from the home-distillers can become a serious problem since at high concentrations in beverages it may cause serious human health problems. Therefore, the objective of this study was to investigate the influence of the activated carbon used in commercial filters on the physicochemical and sensory characteristics of aged sugarcane spirit. Analyses of copper, dry extract, alcoholic degree, higher alcohols, volatile acids, aldehydes, esters, furfural, and methanol were performed. The sensory evaluation was performed by seven selected trained judges, who analyzed the yellow color, woody aroma and flavor, and intensity of alcoholic aroma and flavor of the cane spirit before and after the filtration process. The sensory tests were carried out using a 9 cm non-structured intensity scale. A reduction was observed in all compounds analyzed physicochemically, except for the esters, which increased after filtration. This increase is probably due to the esterification of the alcohols and acids present. According to the sensory results obtained, a reduction was observed in the intensity of the yellow color, aroma, and wood flavor characteristics, the major characteristics of the aging process.
Resumo:
The aim of this study was to extract and identify volatile compounds from pineapple residues generated during concentrated juice processing. Distillates of pineapple residues were obtained using the following techniques: simple hydrodistillation and hydrodistillation by passing nitrogen gas. The volatile compounds present in the distillates were captured by the solid-phase microextraction technique. The volatile compounds were identified in a system of high resolution gas chromatography system coupled with mass spectrometry using a polyethylene glycol polar capillary column as stationary phase. The pineapple residues constituted mostly of esters (35%), followed by ketones (26%), alcohols (18%), aldehydes (9%), acids (3%) and other compounds (9%). Odor-active volatile compounds were mainly identified in the distillate obtained using hydrodistillation by passing nitrogen gas, namely decanal, ethyl octanoate, acetic acid, 1-hexanol, and ketones such as γ-hexalactone, γ-octalactone, δ-octalactone, γ-decalactone, and γ-dodecalactone. This suggests that the use of an inert gas and lower temperatures helped maintain higher amounts of flavor compounds. These data indicate that pineapple processing residue contained important volatile compounds which can be extracted and used as aroma enhancing products and have high potential for the production of value-added natural essences.
Resumo:
The objectives of this study was the physical, chemical, and physiological characterization of marolo (Annona crassiflora, Mart.) during its development. The fruits were harvested 12 Km off Itumirim, Southern Minas Gerais, Brazil, at 20-d intervals from anthesis to fruit maturity. The first fruits were harvested within 60 days. The total development of the fruit took 140 days starting from anthesis. At 140 days after anthesis, the fruit reached its maximum size, with mass of 1.380g, transverse diameter of 13.0 cm, and longitudinal diameter of 11.5 cm. During its development, the fruit showed increase in mass and in traverse and longitudinal diameters. The changes during maturation and ripening, such as: pH reduction and starch degradation, pectic solubilization, and increase in total sugars, soluble solids (ºB), respiratory rate (CO2), titratable acidity, vitamin C, and β-caroteno were observed from the 120th day of marolo development. A decrease in ability to sequester free radicals was observed up the 120th day, followed by an increase. The volatile compounds identified at the end of the development included the esters group only.
Resumo:
In order to determine the variability of pequi tree (Caryocar brasiliense Camb.) populations, volatile compounds from fruits of eighteen trees representing five populations were extracted by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. Seventy-seven compounds were identified, including esters, hydrocarbons, terpenoids, ketones, lactones, and alcohols. Several compounds had not been previously reported in the pequi fruit. The amount of total volatile compounds and the individual compound contents varied between plants. The volatile profile enabled the differentiation of all of the eighteen plants, indicating that there is a characteristic profile in terms of their origin. The use of Principal Component Analysis and Cluster Analysis enabled the establishment of markers (dendrolasin, ethyl octanoate, ethyl 2-octenoate and β-cis-ocimene) that discriminated among the pequi trees. According to the Cluster Analysis, the plants were classified into three main clusters, and four other plants showed a tendency to isolation. The results from multivariate analysis did not always group plants from the same population together, indicating that there is greater variability within the populations than between pequi tree populations.
Resumo:
Blackberry (Rubus fruticosus, cultivar Tupy), an expanding fruit crop in southern Brazil, is greatly appreciated for its flavor and bioactive potential with limited characterization of its metabolite content. The purpose of this study was to characterize the bioactive and volatile organic compound (VOC) content of mature blackberry fruit of cultivar Tupy. Gallic acid, (-)-epicatechin, ferulic acid, and quercetin were the main phenolic compounds found in mature fruit. Among the VOCs identified in 'Tupy' blackberry were important flavor components characteristic of fruit berries, including hydrocarbons, alcohols, aldehydes, ketones, esters, and terpenoids. Some of the VOCs had not been previously found in blackberry, while others have been associated with typical blackberry flavor.
Resumo:
Abstract Brazilian wine production is characterized by Vitis labrusca grape varieties, especially the economically important Isabel cultivar, with over 80% of its production destined for table wine production. The objective of this study was to optimize and validate the conditions for extracting volatile compounds from wine with the solid-phase microextraction technique, using the response surface method. Based on the response surface analysis, it can be concluded that the central point values maximize the process of extracting volatile compounds from wine, i.e., an equilibrium time of 15 minutes, an extraction time of 35 minutes, and an extraction temperature of 30 °C. Esters were the most numerous compounds found under these extraction conditions, indicating that wines made from Isabel cultivar grapes are characterized by compounds that confer a fruity aroma; this finding corroborates the scientific literature.
Resumo:
Abstract The search for chemopreventive/chemoprotective compounds in marine organism has been extensively reported; however, the presence of these compounds in octopus has been incipiently explored. In this research, the antimutagenic, antiproliferative, and antioxidant potential of three crude extracts (methanolic, acetonic, and hexanic) from Paroctopus limaculatus was investigated. Antimutagenic activity against aflatoxin B1 (AFB1) was evaluated through the Ames test using Salmonella typhimurium tester strains TA98 and 100. Antiproliferative activity was assessed using the standard MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay on M12.C3.F6 murine cell line. Antioxidant activity was assessed using the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) methods. Hexanic extract showed the highest antimutagenic and antiproliverative activities inhibiting 80 and 43% of mutagenicity induced by AFB1 for TA98 and TA100, respectively, and showing a high antiproliferative activity at 200 and 100 µg/mL. However, when the antioxidant activity was evaluated at a concentration of 50 mg/mL, the methanolic fraction exerted inhibition of 98 and 96 % ABTS and DPPH radicals, respectively. RP-HPLC and 1H-RMN analyses suggested the presence of double bonds with extended conjugation and oxygenated compounds such as alcohols, esters, ethers or ketones. These results suggested that hexanic and methanolic extract form octopus contained compounds with chemoprotective and antioxidant properties.
Resumo:
Abstract Caprine Coalho cheese presents great potential for a typical protected designation of origin, considering that this traditional Brazilian cheese presents a slightly salty and acid flavor, combined with a unique texture. This study optimized the HS-SPME-GC-MS methodology for volatile analysis of Coalho cheese, which can be used as a tool to help in the identification of the distinctive aroma profile of this cheese. The conditions of equilibrium time, extraction temperature and time were optimized using the statistical tool factorial experimental design 23, and applying the desirability function. After the evaluation, it was concluded that the optimum extraction conditions comprised equilibrium and extraction time of 20 and 40 minutes, respectively; and ideal extraction temperature of 45 °C. The optimum extraction of volatile compounds in goat Coalho cheese captured 32 volatile compounds: 5 alcohols, 5 esters, 3 ketones, 6 acids, 3 aldehydes, 3 terpenes, and 7 hydrocarbons.
Resumo:
Abstract This study evaluated the chemical and volatile composition of jujube wines fermented with Saccharomyces cerevisiae A1.25 with and without pulp contact and protease treatment during fermentation. Yeast cell population, total reducing sugar and methanol contents had significant differences between nonextracted and extracted wine. The nonextracted wines had significantly higher concentrations of ethyl 9-hexadecenoate, ethyl palmitate and ethyl oleate than the extracted wines. Pulp contact also could enhance phenylethyl alcohol, furfuryl alcohol, ethyl palmitat and ethyl oleate. Furthermore, protease treatment can accelerate the release of fusel oils. The first principal component separated the wine from the extracted juice without protease from other samples based on the higher concentrations of medium-chain fatty acids and medium-chain ethyl esters. Sensory evaluation showed pulp contact and protease could improve the intensity and complexity of wine aroma due to the increase of the assimilable nitrogen.