152 resultados para Weed competition periods
Resumo:
The objective of this work was to evaluate the coexistence effects of coffee (Coffea arabica) with densities of sourgrass (Digitaria insularis) on crop macronutrient content and plant growth. The experiment was conducted in plots where one coffee plant was maintained in coexistence with 0 (weed-free check), 1, 2, 4, 8, and 16 sourgrass plants, using a completely randomized design with three replicates. Reduction of coffee growth and macronutrient content, except P that increased, started when the coexistence occurred with sourgrass plants in a density of 1 plant per plot. In general, macronutrient content was reduced by 18-50%, while growth characteristics were reduced by 9-41%, when coffee plants coexisted with 16 plants of sourgrass. Thus, sourgrass competition for nutrients was a strong factor limiting coffee plant growth.
Resumo:
The objective of this study was to evaluate the effect of the ethanolic extract of Serjania lethalis leaves and stems on the diaspore germination and seedling growth of wild poinsettia (Euphorbia heterophylla) and barnyardgrass (Echinochloa crus-galli). The crude ethanolic extract was prepared from 100 g of dry plant material dissolved in 500 ml of ethanol. The extracts were solubilized in a buffer solution containing dimethyl sulfoxide (DMSO) at concentrations of 10.0, 7.5, 5.0 and 2.5 mg mL-1. The effect of these extracts was compared with herbicide oxyfluorfen in bioassays. The ethanolic extracts of S. lethalis leaves and stems inhibited the germination and seedling growth of barnyardgrass and wild poinsettia in a concentration-dependent manner. The reduction in the root length of E. heterophylla seedlings might be attributed to the reduced elongation of metaxylem cells. The phytotoxicity of the extracts ranged according to the receptor species, and for some variables, the inhibitory effect was similar, and even superior, to that of the commercial herbicide. Thus, S. lethalis extracts might be a promising alternative for sustainable weed management.
Resumo:
Rhynchosia capitata is becoming an increasing problem in summer crops, such as cotton, soybean, pearl millet and mungbean in many Asian countries. Laboratory and greenhouse studies have been conducted to determine the effects of several environmental factors on seed germination patterns and seedling emergence of R. capitata. We investigated whether the diverse ecological factors such as temperature, light, salinity, moisture stress, pH, and soil depth affected germination and seedling emergence of R. capitata. Germination increased as temperature increased from 25ºC and significantly reduced at 45ºC. Presence or absence of light did not influence germination. Germination of R. capitata was sensitive to increased salt and moisture stress, as well as to seed burial depth. Only 48% of seeds germinated at 150 mM salt concentration compared to 100% in control (distilled water). Similarly, 15% of seeds germinated at an osmotic potential of ‑0.8 MPa compared to 88% at ‑0.2 MPa. The optimum pH for seed germination of R. capitata was 7 (98% germination), but the seeds also germinated at lower level of pH 5 (85%) and at higher level of pH 10 (75%). In seed burial trial, maximum seedling emergence of 93% occurred at 2 cm depth, and seedling did not emerge from a depth of 12 cm. The high germination ability of R. capitata under a wide range of ecological factors suggests that this species is likely to be the one to cause more problems in a near future, if not managed appropriately.
Resumo:
Competition between plants is one of the main interferences that occurs in agricultural systems and accounts for significant crop yield reductions. The aim of this study was to assess the competitive ability of corn in coexistence with the weed species Eleusine indica. The experiments were conducted in a greenhouse, in the growing season 2010/2011, and were arranged in a completely randomized design with four replications. The experimental units consisted of plastic pots with a volumetric capacity of 8 L. Treatments were arranged in a replacement series with five proportions of corn plants and weed: 100:0, 75:25, 50:50, 25:75, and 0:100, respectively, with a constant population of eight plants per pot, at the end of each treatment. The competitiveness analysis was conducted through diagrams applied to the replacement series experiment and competitiveness index, and the variables evaluated were root, shoot, and total dry mass, and plant height. When in equal proportions, corn showed competitive ability equivalent to goosegrass in relation to the variables shoot, root, and total dry mass. Goosegrass was more competitive than the crop in relation to plant height.
Resumo:
Mowing is one of the most important methods used to control weeds in organic farming, under the no-tillage system. This study aimed to evaluate the effects of three weed management techniques on weed development, using the weeds Bidens pilosa and Commelina benghalensis, in competition with organic corn {mowing at the three-leaf stage (14 days after corn emergence - DACE), mowing at the three- and six-leaf stage (14 and 25 DACE), and no mowing. Single cultivation with no mowing was also evaluated for these weeds. Mowings performed at 14 and 25 DACE prevented the production of B. pilosa seeds, ensuring efficient control of this species. However, the use of this technique was shown to be inefficient in the control of C. benghalensis.
Resumo:
In simple terms, a phytosociological survey is a group of ecological evaluation methods whose aim is to provide a comprehensive overview of both the composition and distribution of plant species in a given plant community. To understand the applicability of phytosociological surveys for weed science, as well as their validity, their ecological basis should be understood and the most suitable ones need to be chosen, because cultivated fields present a relatively distinct group of selecting factors when compared to natural plant communities. For weed science, the following sequence of steps is proposed as the most suitable: (1) overall infestation; (2) phytosociological tables/graphs; (3) intra-characterization by diversity; (4) inter-characterization and grouping by cluster analysis. A summary of methods is established in order to assist Weed Science researchers through their steps into the realm of phytosociology.
Resumo:
This study aimed to evaluate different crops and plant species planted after soybeans for one year, in terms of their potential to inhibit the occurrence of weed species. The following crops that were planted as second crop after soybeans were evaluated: (1) corn (Zea mays) planted at spacing of 90 cm between rows, intercropped with Brachiaria ruziziensis in the inter-rows; (2) sunflower (Helianthus annuus); (3) crambe (Crambe abyssinica); (4) radish (Raphanus sativus); (5) rapeseed (Brassica napus); and (6) winter fallow - no plantation after soybeans. Phytosociological characterization of weed species was carried out at the pre-planting of soybeans in the following cropping season. Estimations of relative abundance, relative frequence, relative dominance and Importance Value Index were made for each species present. Areas were also intra-characterized by the diversity coefficients of Simpson and modified Shannon-Weiner, and areas were compared using the Jaccard similarity coefficient for presence-only, by multivariate cluster analysis. In the short‑term (a single cropping season), cultivation of winter crops do contribute for lower occurrence of weed species at the pre-planting of soybeans on the subsequent cropping season. The suppressive effects depend both on the species grown in the winter and in the amount of straw left on the soil by these winter crops. Radish was more efficient in inhibiting the occurrence of weed species and rapeseed showed composition of infestation similar to that observed at the area under fallow.
Resumo:
Gliricidia (Gliricidia sepium) seedlings are usually beneficial to corn crops when planted between corn rows. The objective of this work was to assess the effects of corn intercropped with gliricidia and "sabiá" (Mimosa caesalpiniifolia), a species native to the Brazilian northeastern region, on weed control and corn green ear and grain yields. The experiment was carried out at Estação Experimental da Universidade Federal Rural do Semi-Árido - UFERSA (Mossoró, State of Rio Grande do Norte, Brazil). The experimental design consisted of randomized complete blocks (multifactorial design) with five replications, arranged in split-plots. The plots consisted of corn cultivars AG1051 and BM 2022; subplot treatments (six) were no-hoeing, twice-hoeing (at 20 and 40 days after sowing) and intercropping with gliricidia and "sabiá", either directly sown or transplanted, simultaneously with corn sowing. The intercropped leguminous plants were spaced 0.40 m from each other, and directly seeded or transplanted (30-day-old seedlings) in between two 1 m-spaced corn rows. Twenty three weed species were identified during the experiment. Gliricidia seedlings were superior to "sabiá" seedlings with regard to plant height and survival rate. The highest corn green ear and grain yields were found for twice-hoed subplots, while the lowest yield was found for no-hoed or intercropped subplots. However, grain yield values in intercropped treatments did not differ from grain yield values in hoed plots. In addition, marketable husked green ear mean weights did not differ between twice-hoed subplots and subplots directly seeded with gliricidia and "sabiá". Such results indicated that corn benefited from the intercropping system, but intercropping with gliricidia and "sabiá" transplanted resulted in lower benefits than with the direct sowing of those species.
Resumo:
Lesser celandine (Ranunculaceae) is a perennial weed with tuberous root. Tubers are the most important means of reproduction and dispersion of this weed. In recent years, it has spread into wheat fields in Western Iran, mainly in the Lorestan province. A series of experiments were conducted to determine cardinal temperatures and to study the effects of pre-chilling, temperature fluctuations, tuber size, freezing and drying on germination of the tubers, as well as the effect of planting depth on sprouting of the tubers. The results obtained showed that the highest percentage of germination occurred when tubers were stored for more than 2 weeks at 4 or 8 ºC. The optimum temperature for germination differed in large and small tubers (8 and 14oC, respectively). Germination was the highest (almost 100%) at temperature fluctuations of 5-10oC. Germination of the finger-like and small tubers was the highest (95%); however, very small, small, and broken tubers showed the lowest germination percentage. In the freezing experiment, decreasing the temperature and increasing the storage duration decreased the germination of tubers. Increasing the osmotic potential and temperature resulted in decreased tuber germination of Lesser celandine. Lesser celandine could sprout down to 20 cm depth but heat demand for tubers from superficial depth was smaller than for tubers planted at greater depth.
Resumo:
Due to the increase of water deficiency in many farm regions and its meaning on weed interference, competitive interactions between soybean and three weeds were evaluated under water stress (20 to 40 days after transplanting) and no stress conditions. Three independent experiments were carried out in a growth chamber, being each one composed by the weeds Alternanthera tenella, Tridax procumbens or Digitaria ciliaris, along with the crop, in which soil water condition and plant composition effects were evaluated while in competition. A replacement series system was used, including both monoculture of each species and a mixture with a ratio of 50% between weed and soybean. A completely randomized design was used in factorial arrangement, with treatments distributed in three levels for plant composition factor (soybean and weeds monocultures, in addition to the soybean + weed mixture) and two levels for the water factor (with or without stress), amounting six treatments in each experiment. Soybean dry mass was higher than weed dry mass, when growing without water stress. However, under water stress conditions, the dry mass of soy was reduced in all experiments, mainly in the D. ciliaris comparative experiment. Water restriction was also significant in the plants' photosynthesis reduction in most of the experiments, reducing leaf area duration and efficiency of water use. Analysing all variables shows greater weed tolerance than soybean when submitted to water deficit and with distinct changes of their interactions and mechanism of competition, in each experiment.
Resumo:
Weeds cause significant reduction in the irrigated rice crop yield. Cyperus esculentus (yellow nutsedge) is adapted to irrigate environment. Information on the competitive ability of the weed to the culture, and their environmental adaptation, are scarce. In this study, we sought to determine the initial growth and competitive ability of yellow nutsedge and irrigated rice, as a function of cultivar growth cycle. Initial growth and competition studies were conducted in a randomized complete design in a greenhouse in the agricultural year 2010/11. For the initial growth study, the treatments consisted of a factorial combination of a biotype of yellow nutsedge and two rice cultivars in the function of the vegetative cycle (BRS Querência: early cycle - IRGA 424: intermediate cycle) and six evaluation times (10, 20, 30, 40, 50, and 60 days after emergence). Were evaluated: plant height, leaf area, aboveground dry biomass and root dry biomass. In the competitive ability study in the replacement series, the cultivar BRS Querência (early cycle) and yellow nutsedge were utilized and tested in different proportions of competition (100:0, 75:25, 50:50, 25:75, and 0:100). Were evaluated leaf area and aboveground dry biomass. In general, rice cultivars have an adaptive value equivalent to yellow nutsedge. IRGA 424 cultivar has less height than weed, becoming the weed control more important in this cultivar. For rice crop, intraspecific competition is more important, whereas for the weed, interspecific competition is the most pronounced.
Resumo:
ALS-inhibiting herbicides usually provide adequate weed control in irrigated rice fields. After consecutive years of use, the Cyperaceae species, globe fringerush (Fimbristylis miliacea) began to show resistance to ALS (acetolactate synthase) inhibitors. Globe fringerush is one of the most problematic herbicide-resistant weeds in irrigated rice in the state of Santa Catarina in the South of Brazil. The objective of this research was to examine cross resistance of globe fringerush to ALS inhibitors, under field conditions. Two experiments were conducted in a rice field naturally infested with ALS-resistant globe fringerush in Santa Catarina, in the 2008/09 and 2009/10 cropping seasons. The experimental units were arranged in randomized complete block design, with five replicates, consisting of two factors (herbicide and dose) in a 4 x 5 factorial arrangement. ALS herbicides included bispyribac-sodium, ethoxysulfuron, pyrazosulfuron-ethyl and penoxsulam. Six-leaf globe fringerush was sprayed with herbicide doses of 0, 0.5, 1, 2 and 4X the recommended doses in a spray volume of 200 L ha-1. The number of rice culm, filled and sterile grains, plant height, dry shoot biomass and grain yield were recorded. Globe fringerush control was evaluated 28 and 70 days after herbicide application (DAA); shoots were harvested at 13 weeks after herbicide application and dry weight recorded. Competition with globe fringerush reduced the number of culm and rice grain yield. The globe fringerush biotype in this field was resistant to all ALS herbicides tested. Penoxsulam had the highest level of activity among treatments at 28 and 70 DAA, but the control level was only 50% and 42%, respectively, in the second year of assessment. This was not enough to prevent rice yield loss. Alternative herbicides and weed control strategies are necessary to avoid yield losses in rice fields infested with ALS-resistant biotypes of globe fringerush.
Resumo:
The objectives of this study were to evaluate baby corn yield, green corn yield, and grain yield in corn cultivar BM 3061, with weed control achieved via a combination of hoeing and intercropping with gliricidia, and determine how sample size influences weed growth evaluation accuracy. A randomized block design with ten replicates was used. The cultivar was submitted to the following treatments: A = hoeings at 20 and 40 days after corn sowing (DACS), B = hoeing at 20 DACS + gliricidia sowing after hoeing, C = gliricidia sowing together with corn sowing + hoeing at 40 DACS, D = gliricidia sowing together with corn sowing, and E = no hoeing. Gliricidia was sown at a density of 30 viable seeds m-2. After harvesting the mature ears, the area of each plot was divided into eight sampling units measuring 1.2 m² each to evaluate weed growth (above-ground dry biomass). Treatment A provided the highest baby corn, green corn, and grain yields. Treatment B did not differ from treatment A with respect to the yield values for the three products, and was equivalent to treatment C for green corn yield, but was superior to C with regard to baby corn weight and grain yield. Treatments D and E provided similar yields and were inferior to the other treatments. Therefore, treatment B is a promising one. The relation between coefficient of experimental variation (CV) and sample size (S) to evaluate growth of the above-ground part of the weeds was given by the equation CV = 37.57 S-0.15, i.e., CV decreased as S increased. The optimal sample size indicated by this equation was 4.3 m².
Resumo:
Asphodelus tenuifolius is becoming a more common weed in rain-fed area in Pakistan. Laboratory and greenhouse experiments were conducted to determine the effect of different environmental factors on germination and emergence of A.tenuifolius. Results showed that A.tenuifolius can tolerate a wide range of varying environmental factors. Greatest percentage of germination (80%) was recorded at 15 ºC constant temperature; however, considerable germination occurred at 20 and 25 ºC. Light for 10 h photoperiod stimulate germination of Asphodelus tenuifolius compared with complete darkness. Germination was totally inhibited at osmotic stress higher than -0.8 MPa. There was no significant difference in germination at pH 6 to 8; however, there was a slightly decrease at pH 9, compared with distilled water. Asphodelus tenuifolius was very sensitive to salinity; however, a few seeds of A.tenuifolius were able to germinate even at 150 mM NaCl concentration. Greatest emergence occurred with seed placed at soil surface and emergence decreased with increase in burial depth. No emergence occurred from 4 cm or greater. This information may aid in developing tools and strategies for management.
Resumo:
This work was carried out with the objective of evaluating the growth and development of honey weed (Leonurus sibiricus) based on days or thermal units (growing degree days). Thus, two independent trials were developed to quantify the phenological development and total dry mass accumulation in increasing or decreasing photoperiod conditions. Considering only one growing season, honey weed phenological development was perfectly fit to day scale or growing degree days, but with no equivalence between seasons, with the plants developing faster at increasing photoperiods, and flowering 100 days after seeding. Even day-time scale or thermal units were not able to estimate general honey weed phenology during the different seasons of the year. In any growing condition, honey weed plants were able to accumulate a total dry mass of over 50 g per plant. Dry mass accumulation was adequately fit to the growing degree days, with highlights to a base temperature of 10 ºC. Therefore, a higher environmental influence on species phenology and a lower environmental influence on growth (dry mass) were observed, showing thereby that other variables, such as the photoperiod, may potentially complement the mathematical models.