190 resultados para Virulence genotypes
Resumo:
Low phosphorus supply markedly limits leaf growth and genotypes able to maintain adequate leaf area at low P could adapt better to limited-P conditions. This work aimed to investigate the relationship between leaf area production of common bean (Phaseolus vulgaris) genotypes during early pod filling and plant adaptation to limited P supply. Twenty-four genotypes, comprised of the four growth habits in the species and two weedy accessions, were grown at two P level applied to the soil (20 and 80 mg kg-1) in 4 kg pots and harvested at two growth stages (pod setting and early pod filling). High P level markedly increased the leaf number and leaf size (leaf area per leaf), slightly increased specific leaf area but did not affect the net assimilation rate. At low P level most genotypic variation for plant dry mass was associated with leaf size, whereas at high P level this variation was associated primarily with the number of leaves and secondarily with leaf size, specific leaf area playing a minor role at both P level. Determinate bush genotypes presented a smaller leaf area, fewer but larger leaves with higher specific leaf area and lower net assimilation rate. Climbing genotypes showed numerous leaves, smaller and thicker leaves with a higher net assimilation rate. Indeterminate bush and indeterminate prostrate genotypes presented the highest leaf area, achieved through intermediate leaf number, leaf size and specific leaf area. The latter groups were better adapted to limited P. It is concluded that improved growth at low P during early pod filling was associated with common bean genotypes able to maintain leaf expansion through leaves with greater individual leaf area.
Resumo:
An experiment was conducted in a growth chamber to evaluate characteristics of the rhizosphere of maize genotypes contrasting in P-use efficiency, by determining length and density of root hairs, the rhizosphere pH and the functional diversity of rhizosphere bacteria. A sample of a Red Oxisol was limed and fertilized with N, K and micronutrients. In the treatment with the highest P level, 174 mg kg-1 P was added. Each experimental unit corresponded to a PVC rhizobox filled with 2.2 dm-3 soil. The experiment was completely randomized with three replications in a 5 x 2 factorial design, corresponding to five genotypes (H1, H2 and H3 = P-efficient hybrids, H4 and H5 = P-inefficient hybrids) and two P levels (low = 3 mg dm-3, high = 29 mg dm-3). It was found that 18 days after transplanting, the nodal roots of the hybrids H3 and H2 had the longest root hairs. In general, the pH in the rhizosphere of the different genotypes was higher than in non-rhizosphere soil, irrespective of the P level. The pH was higher in the rhizosphere of lateral than of nodal roots. At low P levels, the pH variation of the hybrids H2, H4 and H5 was greater in rhizospheric than in non-rhizospheric soil. The functional microbial activity in the rhizosphere of the hybrids H3 and H5 was highest. At low soil P levels, the indices of microbial functional diversity were also higher. The microbial metabolic profile in the rhizosphere of hybrids H1, H2, H3, and H5 remained unaltered when the plants were grown at low P. The variations in the rhizosphere properties could not be related to patterns of P-use efficiency in the tested genotypes.
Resumo:
Establishment of the water layer in an irrigated rice crop leads to consumption of free oxygen in the soil which enters in a chemical reduction process mediated by anaerobic microorganisms, changing the crop environment. To maintain optimal growth in an environment without O2, rice plants develop pore spaces (aerenchyma) that allow O2 transport from air to the roots. Carrying capacity is determined by the rice genome and it may vary among cultivars. Plants that have higher capacity for formation of aerenchyma should theoretically carry more O2 to the roots. However, part of the O2 that reaches the roots is lost due to permeability of the roots and the O2 gradient created between the soil and roots. The O2 that is lost to the outside medium can react with chemically reduced elements present in the soil; one of them is iron, which reacts with oxygen and forms an iron plaque on the outer root surface. Therefore, evaluation of the iron plaque and of the formation of pore spaces on the root can serve as a parameter to differentiate rice cultivars in regard to the volume of O2 transported via aerenchyma. An experiment was thus carried out in a greenhouse with the aim of comparing aerenchyma and iron plaque formation in 13 rice cultivars grown in flooded soils to their formation under growing conditions similar to a normal field, without free oxygen. The results indicated significant differences in the volume of pore spaces in the roots among cultivars and along the root segment in each cultivar, indicating that under flooded conditions the genetic potential of the plant is crucial in induction of cell death and formation of aerenchyma in response to lack of O2. In addition, the amount of Fe accumulated on the root surface was different among genotypes and along the roots. Thus, we concluded that the rice genotypes exhibit different responses for aerenchyma formation, oxygen release by the roots and iron plaque formation, and that there is a direct relationship between porosity and the amount of iron oxidized on the root surface.
Resumo:
Selection of common bean (Phaseolus vulgaris L.) cultivars with enhanced root growth would be a strategy for increasing P uptake and grain yield in tropical soils, but the strong plasticity of root traits may compromise their inclusion in breeding programs. The aim of this study was to evaluate the magnitude of the genotypic variability of root traits in common bean plants at two ontogenetic stages and two soil P levels. Twenty-four common bean genotypes, comprising the four growth habits that exist in the species and two wild genotypes, were grown in 4 kg pots at two levels of applied P (20 and 80 mg kg-1) and harvested at the stages of pod setting and early pod filling. Root area and root length were measured by digital image analysis. Significant genotype × P level and genotype × harvest interactions in analysis of variance indicate that the genotypic variation of root traits depended on soil nutrient availability and the stage at which evaluation was made. Genotypes differed for taproot mass, basal and lateral root mass, root area and root length at both P levels and growth stages; differences in specific root area and length were small. Genotypes with growth habits II (upright indeterminate) and III (prostrate indeterminate) showed better adaptation to limited P supply than genotypes of groups I (determinate) and IV (indeterminate climbing). Between the two harvests, genotypes of groups II and III increased the mass of basal and lateral roots by 40 and 50 %, respectively, whereas genotypes of groups I and IV by only 7 and 19 %. Values of the genotypic coefficient of determination, which estimates the proportion of phenotypic variance resulting from genetic effects, were higher at early pod filling than at pod setting. Correlations between shoot mass and root mass, which could indicate indirect selection of root systems via aboveground biomass, were higher at early pod filling than at pod setting. The results indicate that selection for root traits in common bean genotypes should preferentially be performed at the early pod-filling stage.
Resumo:
This work was conducted at the Universidade Estadual de Londrina (UEL), in Londrina, State of Paraná, Brazil, with the goal to study food-type soybean (Glycine max (L.) Merrill) genotypes performance for use in cultivation or crosses. A total of 104 genotypes were analyzed: 88 were food-type with large seeds, eight were food-type with small seeds, and eight-grain types adapted cultivars. The experimental plan was in randomized complete block design with four replications, and 12 traits of agronomic importance were considered. Genetic diversity was observed in the food-type germplasm. There were some genotypes with high yield adapted to a normal period of sowing. Soybean genetic improvement programs for direct human consumption in Brazil, either by means of Asiatic pure lines or by means of the incorporation of genes for late flowering in short-day conditions in this lines is highly viable.
Resumo:
Random amplified polymorphic DNA markers (RAPD) were used to estimate the variability of 14 genotypes of Brazilian wheat (Triticum aestivum L.), using a set of 50 random 10mer primers. A total of 256 reproducibly scorable DNA amplification products were obtained from 48 of the primers, 83% of which were polymorphic. Genetic distances among genotypes were calculated and a dendrogram and a principal coordinates analysis showing the genetic relationships among them were obtained. Despite the low variability found (average genetic distance of 27%), two groups of genotypes could be identified, which probably reflect how they were formed. Studies such as this one may be important in the planning and development of future improvement programs for this plant species.
Resumo:
Phenotypic virulence analysis was made on population of Pyricularia grisea isolates collected from 10 upland cultivars in three distinct rice breeding sites, with the objective of studying the degree of similarity in the phenotypic virulence among the isolates, the composition of races, and their virulence pattern. Sixteen races were identified based on the reaction type on eight standard international differentials, the predominant ones being IB9 and IB41. The virulence frequency was high on IAC47 and IAC165 among medium and early maturing cultivars, respectively. The frequency of isolates virulent was greater on upland rice cultivars (51.1%) than on irrigated rice cultivars (21.8%). Both virulent and avirulent isolates were present in the population of P. grisea to the known genes in the near isogenic lines. Of72test isolates, 94.4% were virulent for genes Pi3 and Pi4a. Thevirulence frequencies were relatively lower in decreasing order on Pi1, Pi4b and Pi2. Thecoefficient of similarity ranged from 0.28 to1.0 among the isolates pertaining to different races, while within the race IB9, it varied from 0.56 to1.0. Considering the coefficient of similarity of 0.81, 72% of isolates of race IB9 exhibited similar pattern of virulence.
Resumo:
Seed from the sensitive wheat (Triticum aestivumL.) cultivar Anahuac was treated to gamma-ray irradiation and eleven Al3+ tolerant mutants selected. The objective was to compare these mutants to the original Anahuac and to the tolerant wheat cultivars IAC-24 and IAC-60 from 1994 to 1996 in acid (Capão Bonito) and limed (Monte Alegre do Sul) soil field trials, in the State of São Paulo, Brazil. Grain yield and agronomic characteristics were analyzed. All the mutant lines yielded higher than the sensitive Anahuac cultivar in the acid soils of Capão Bonito. Under limed soil conditions, 10 mutants had a similar yield to the original sensitive cultivar and one a lower yield. The majority of the mutants were similar in yield to the tolerant cultivars IAC-24 and IAC-60 under both conditions. Some of the mutants showed altered agronomic characteristics, but these alterations did not generally influence the grain yield. The results indicated that tolerant lines with good characteristics may be obtained from a susceptible cultivar by mutation induction, thus allowing cropping under conditions where Al3 + is a limiting factor.
Resumo:
Resistant varieties have been the preferred means to control Magnaporthe grisea, the causal organism of the rice blast disease. The objective of this study was to examine the degree of diversity of the pathogen in different rice growing regions of São Paulo State, Brazil. Blast samples collected from rice varieties in three different regions (Tremembé, Mococa and José Bonifácio) were analyzed for race structure employing the Japanese rice differentials. The highest degree of virulence diversity was observed in Tremembé with 22 different races in three different varieties. Furthermore, no resistance gene in the Japanese differentials was effective to all isolates of M. grisea from São Paulo State.
Resumo:
Photosynthetic responses to daily environmental changes were studied in bean (Phaseolus vulgaris L.) genotypes 'Carioca', 'Ouro Negro', and Guarumbé. Light response curves of CO2 assimilation and stomatal conductance (g s) were also evaluated under controlled (optimum) environmental condition. Under this condition, CO2 assimilation of 'Carioca' was not saturated at 2,000 µmol m-2 s-1, whereas Guarumbé and 'Ouro Negro' exhibited different levels of light saturation. All genotypes showed dynamic photoinhibition and reversible increase in the minimum chlorophyll fluorescence yield under natural condition, as well as lower photosynthetic capacity when compared with optimum environmental condition. Since differences in g s were not observed between natural and controlled conditions for Guarumbé and 'Ouro Negro', the lower photosynthetic capacity of these genotypes under natural condition seems to be caused by high temperature effects on biochemical reactions, as suggested by increased alternative electron sinks. The highest g s values of 'Carioca' were observed at controlled condition, providing evidences that reduction of photosynthetic capacity at natural condition was due to low g s in addition to the high temperature effects on the photosynthetic apparatus. 'Carioca' exhibited the highest photosynthetic rates under optimum environmental condition, and was more affected by daily changes of air temperature and leaf-to-air vapor pressure difference.
Resumo:
The objective of this work was to characterize 27 potato genotypes, using molecular markers. Polyacrylamide gel electrophoresis, RAPD techniques and isozymes of esterase, phosphoglucomutase and soluble proteins were analyzed in tubers, and isocitrate dehydrogenase, aspartate transaminase, phosphoglucomutase and peroxidase, in leaves. Eighteen primers were tested and four were chosen, kits OPX (01, 04 and 09) and OPY (07), to analyze RAPD markers in leaf extracts. Similarity and cluster analysis were conducted using Jaccard coefficient and the unweighted pair-group method using arithmetic average. Despite the differences detected in the analysis of proteins and isozymes in the tubers, as well as of isozymes in the leaves, the characterization of all genotypes through gel electrophoresis was not possible, while RAPD markers were efficient to characterize all the 27 genotypes.
Resumo:
The purpose of this paper was to screen thirty-two arracacha genotypes for their reaction to root soft rot. Twenty roots of each genotype were inoculated with two Pectobacterium chrysanthemi isolates in a randomized experiment (10 roots/isolate). After inoculation, roots were individually wrapped with PVC film and kept at 26ºC in closed plastic bags. Soft rot lesions were recorded after 36 hours and genotypes were grouped in four classes of susceptibility by cluster analysis: 10 were less susceptible, 16 intermediate, 3 susceptible and 3 very susceptible. All the tested arracacha genotypes showed only variation in the degree of susceptibility.
Resumo:
The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.
Resumo:
The objective of this work was to evaluate Zn use efficiency by upland rice genotypes. The experiment was carried out in a greenhouse, with ten upland rice genotypes grown on an Oxisol (Typic Hapludox) with no application, and with application of 10 mg kg-1 Zn, applied as zinc sulfate. Shoot dry weight, grain yield, Zn harvest index, Zn concentration in shoot and in grain were significantly influenced by soil Zn levels and genotypes. However, panicle number and grain harvest index were significantly affected only by genotype. Genotypes CNA8557, CNA8540 and IR42 produced higher grain yield than other genotypes. Genotypes showed significant variability in Zn recovery efficiency. On average, 13% of the applied Zn was recovered by upland rice genotypes. Genotypes with high Zn recovery efficiency could be used in breeding of Zn efficient upland rice cultivars. Higher level of soil Zn (10 mg kg-1) increased significantly the concentrations of plant Cu and Mn. However, Fe concentrations in plant (shoot and grain) were not influenced by soil Zn levels.
Resumo:
The objective of this work was to evaluate the reactions of three peanut breeding lines (IC-10, IC-34, and ICGV 86388) to Tomato spotted wilt virus (TSWV) by mechanical and thrips inoculation, under greenhouse conditions, and compare them to the reactions of cultivars SunOleic, Georgia Green, and the breeding line C11-2-39. TSWV infection by mechanical inoculation was visually assessed using an index ranging from 0 (no symptoms) to 4 (apical death). Enzyme-linked immunosorbent assay was used to confirm TSWV infection from both mechanical and thrips inoculations. IC-10, IC-34, ICGV 86388, and C11-2-39 were more resistant than the cultivars SunOleic and Georgia Green based on mechanical inoculation. Upon thrips inoculation only IC-34 and ICGV-86388 were infected by TSWV, as demonstrated by reverse transcription polymerase chain reaction (RT-PCR), although no symptoms of infection were observed. The peanut breeding lines IC-10, IC-34, and ICGV 86388 show higher level of resistance to TSWV than cultivar Georgia Green considered a standard for TSWV resistance.