128 resultados para Venom toxins
Resumo:
With the aim to determine if the tremorgenic toxin of Ipomoea asarifolia is eliminated in milk, three groups of Swiss female mice received, immediately after giving birth until weaning, a ration containing 20% or 30% of dry I. asarifolia. All the offspring of the females that received 20% or 30% I. asarifolia showed tremors 2-4 days after birth. The offspring of the females that received 20% I. asarifolia recovered 4-7 days after weaning. The offspring of the females that received 30% of the plant in the ration died while showing tremors before weaning or up to two days after weaning. It is concluded that the tremorgenic compound of I. asarifolia or its toxic metabolites are eliminated in milk, and that lactating mice may be used as a model for the determination of the toxic compound(s) in this plant.
Resumo:
The present study combines the examination of toxins produced by C. cassiicola and the effects of the fungus colonization on L. camara. C. cassiicola was cultivated on solid media and the crude extracts CAE and CE were produced. Both extracts were submitted to a seed germination and growth assay utilizing Physalis ixocarpa, Trifolium alexandrinum, Lolium multiflorum and Amaranthus hypochodriacus. The effect of the extracts on the ATP-synthesis in isolated spinach chloroplasts was also tested. Bioassay guided chromatographic fractionation identified the most active extract (CAE). From this extract ergosta-4,6,8(14),22-tetraen-3-one (C1) and fatty acids were isolated. The C1 compound reduce ATP synthesis in isolated spinach chloroplasts. The interference of fatty acids with ATP synthesis and also with weed growth provides one explanation of the phytogrowth-inhibitory properties of such fungal extracts. Histological observations involving fungus-plant interaction were made on L. camara plants inoculated with C. cassiicola conidia suspension. After inoculations, fragments of the leaf blades were prepared for observation by light and scanning electron microscopy. Fungal colonization of Lantana camara was typical of a necrotroph and penetration initiated a hypersensitive response. L. camara reacted to the pathogen penetration through thickening of the epidermis walls, cytoplasm granulation and a cicatrisation tissue.
Resumo:
Three horse-derived antivenoms were tested for their ability to neutralize lethal, hemorrhagic, edema-forming, defibrinating and myotoxic activities induced by the venom of Bothrops atrox from Antioquia and Chocó (Colombia). The following antivenoms were used: a) polyvalent (crotaline) antivenom produced by Instituto Clodomiro Picado (Costa Rica), b) monovalent antibothropic antivenom produced by Instituto Nacional de Salud-INS (Bogotá), and c) a new monovalent anti-B. atrox antivenom produced with the venom of B. atrox from Antioquia and Chocó. The three antivenoms neutralized all toxic activities tested albeit with different potencies. The new monovalent anti-B. atrox antivenom showed the highest neutralizing ability against edema-forming and defibrinating effects of B. atrox venom (41 ± 2 and 100 ± 32 µl antivenom/mg venom, respectively), suggesting that it should be useful in the treatment of B. atrox envenomation in Antioquia and Chocó
Resumo:
Acute thrombosis can be induced in rabbits by a triggering protocol using Russell's viper venom and histamine given after 8 months of a 1% cholesterol diet and balloon desendothelization. In the present study, we tested the hypothesis that aortic desendothelization performed 4 months before the triggering protocol without a high cholesterol diet is a highly effective and less expensive way of producing arterial atherosclerosis and thrombosis. Nineteen male New Zealand white rabbits on a normal diet were studied. The control group (N = 9) received no intervention during the 4-month observation period, while the other group (N = 10) was submitted to aortic balloon desendothelization using a 4F Fogarty catheter. At the end of this period, all animals were killed 48 h after receiving the first dose of the triggering treatment. Eight of 10 rabbits (80%) in the balloon-trauma group presented platelet-rich arterial thrombosis while none of the animals in the control group had thrombus formation (P<0.01). Thus, this model, using balloon desendothelization without dietary manipulation, induces arterial atherosclerosis and thrombosis and may provide possibilities to test new therapeutic approaches
Resumo:
The severe bleeding diathesis produced by intoxication with the venom of Lonomia achelous caterpillars is characterized by prolonged bleeding from superficial skin wounds as well as massive hemorrhage into body cavities. The aim of the present study was to evaluate the effect of the crude venom and its fibrinolytic fractions on in vitro lysis of whole blood clots. Venom fractions with fibrinolytic activity were obtained by gel filtration chromatography on Sephadex G75 using imidazole buffer, pH 7.4, at a flow rate of 24 ml/h. Four peaks with fibrinolytic activity were obtained by this method. The highest activity was found in the first two peaks (both peaks were used for the experiments). The results show that the caterpillar venom degraded the preformed clots at a slower rate than plasmin. In addition, plasma protease inhibitors of the fibrinolytic system (a2-antiplasmin, a2-macroglobulin, PAI, etc.) only weakly inhibited the lytic effect of the caterpillar venom. These characteristics, as well as the pattern of fibrinogen degradation products, the delay period on fibrin plate lysis and amidolytic activity on chromogenic substrate, reported previously, indicate that the caterpillar enzymes are different from plasmin and trypsin.
Resumo:
Alpha-Hemolysin is synthesized as a 1024-amino acid polypeptide, then intracellularly activated by specific fatty acylation. A second activation step takes place in the extracellular medium through binding of Ca2+ ions. Even in the absence of fatty acids and Ca2+ HlyA is an amphipathic protein, with a tendency to self-aggregation. However, Ca2+-binding appears to expose hydrophobic patches on the protein surface, facilitating both self-aggregation and irreversible insertion into membranes. The protein may somehow bind membranes in the absence of divalent cations, but only when Ca2+ (or Sr2+, or Ba2+) is bound to the toxin in aqueous suspensions, i.e., prior to its interaction with bilayers, can a-hemolysin bind irreversibly model or cell membranes in such a way that the integrity of the membrane barrier is lost, and cell or vesicle leakage ensues. Leakage is not due to the formation of proteinaceous pores, but rather to the transient disruption of the bilayer, due to the protein insertion into the outer membrane monolayer, and subsequent perturbations in the bilayer lateral tension. Protein or glycoprotein receptors for a-hemolysin may exist on the cell surface, but the toxin is also active on pure lipid bilayers.
Resumo:
Bothrops venoms are complex mixtures of components with a wide range of biological activities. Among these substances, myotoxins have been investigated by several groups. Bothropstoxin-1 (Bthtx-1) is a phospholipase A2-like basic myotoxin from Bothrops jararacussu. The purification of this component involves two chromatographic steps. Although providing a pure material, the association of these two steps is time consuming and a single-step method using high performance chromatography media would be useful. In the present study, we describe a single-step purification method for Bthtx-1. Bothrops jararacussu venom was dissolved in 1 ml buffer. After centrifugation, the supernatant was injected into a Resource-S cation exchange column connected to an FPLC system and eluted with a linear salt gradient. The complete procedure took 20 min, representing a considerable time gain when compared to a previously described method (Homsi-Brandenburgo MI et al. (1988) Toxicon, 26: 615-627). Bthtx-1 purity and identity, assessed by SDS-PAGE and N-terminal sequencing, resulted in a single band with a molecular mass of about 14 kDa and the expected sequence of the first 5 residues, S-L-F-E-L. Although the amount of protein purified after each run is lower than in the previously described method, we believe that this method may be useful for small-scale purifications.
Resumo:
A neurotoxic peptide, granulitoxin (GRX), was isolated from the sea anemone Bunodosoma granulifera. The N-terminal amino acid sequence of GRX is AKTGILDSDGPTVAGNSLSGT and its molecular mass is 4958 Da by electrospray mass spectrometry. This sequence presents a partial degree of homology with other toxins from sea anemones such as Bunodosoma caissarum, Anthopleura fuscoviridis and Anemonia sulcata. However, important differences were found: the first six amino acids of the sequence are different, Arg-14 was replaced by Ala and no cysteine residues were present in the partial sequence, while two cysteine residues were present in the first 21 amino acids of other toxins described above. Purified GRX injected ip (800 µg/kg) into mice produced severe neurotoxic effects such as circular movements, aggressive behavior, dyspnea, tonic-clonic convulsion and death. The 2-h LD50 of GRX was 400 ± 83 µg/kg.
Resumo:
The effects of a fraction (T1) of Tityus serrulatus scorpion venom prepared by gel filtration on gastric emptying and small intestinal transit were investigated in male Wistar rats. Fasted animals were anesthetized with urethane, submitted to tracheal intubation and right jugular vein cannulation. Scorpion toxin (250 µg/kg) or saline was injected iv and 1 h later a bolus of saline (1.0 ml/100 g) labeled with 99m technetium-phytate (10 MBq) was administered by gavage. After 15 min, animals were sacrificed and the radioactivity remaining in the stomach was determined. Intestinal transit was evaluated by instillation of a technetium-labeled saline bolus (1.0 ml) through a cannula previously implanted in the duodenum. After 60 min, the progression of the marker throughout 7 consecutive gut segments was estimated by the geometric center method. Gastric retention of the liquid test meal in rats injected with scorpion toxin (median: 88%; range: 52-95%) was significantly higher (P<0.02) than in controls (54%; 21-76%), an effect which was not modified by gastric secretion blockade with ranitidine. The progression of the isotope marker throughout the small intestine was significantly slower (P<0.05) in rats treated with toxin (1.2; 1.0-2.5) than in control animals (2.3; 1.0-3.2). Inhibition of both gastric emptying and intestinal transit in rats injected with scorpion toxin suggests an increased resistance to aboral flow, which might be caused by abnormal neurotransmitter release or by the local effects of venom on smooth muscle cells.
Resumo:
We examined the effect of crotoxin, the neurotoxic complex from the venom of the South American rattlesnake Crotalus durissus terrificus, on the uptake of ³H-choline in minces of smooth muscle myenteric plexus from guinea pig ileum. In the concentration range used (0.03-1 µM) and up to 10 min of treatment, crotoxin decreased ³H-choline uptake by 50-75% compared to control. This inhibition was time dependent and did not seem to be associated with the disruption of the neuronal membrane, because at least for the first 20 min of tissue exposure to the toxin (up to 1 µM) the levels of lactate dehydrogenase (LDH) released into the supernatant were similar to those of controls. Higher concentrations of crotoxin or more extensive incubation times with this toxin resulted in elevation of LDH activity detected in the assay supernatant. The inhibitory effect of crotoxin on ³H-choline uptake seems to be associated with its phospholipase activity since the equimolar substitution of Sr2+ for Ca2+ in the incubation medium or the modification of the toxin with p-bromophenacyl bromide substantially decreased this effect. Our results show that crotoxin inhibits ³H-choline uptake with high affinity (EC25 = 10 ± 5 nM). We suggest that this inhibition could explain, at least in part, the blocking effect of crotoxin on neurotransmission.
Resumo:
The venom of Lonomia obliqua caterpillar may induce a hemorrhagic syndrome in humans, and blood incoagulability by afibrinogenemia when intravenously injected in laboratory animals. The possible antithrombotic and thrombolytic activities of L. obliqua caterpillar bristle extract (LOCBE) were evaluated in this study. The minimal intravenous dose of the extract necessary to induce afibrinogenemia and anticoagulation was 3.0 and 10.0 µg protein/kg body weight for rabbits and rats, respectively. In rabbits, this dose induced total blood incoagulability for at least 10 h and did not reduce the weight of preformed venous thrombi, in contrast to streptokinase (30,000 IU/kg). In rats, pretreatment with 5.0 and 10.0 µg/kg LOCBE prevented the formation of thrombi induced by venous stasis or by injury to the venous endothelium. The dose of 5.0 µg/kg LOCBE did not modify blood coagulation assay parameters but increased bleeding time and decreased plasma factor XIII concentration. When the extract was administered to rats at the dose of 10.0 µg/kg, the blood was totally incoagulable for 6 h. These data show that LOCBE was effective in preventing experimental venous thrombosis in rats, justifying further studies using purified fractions of the extract to clarify the mechanisms of this effect.
Resumo:
We investigated the protective effect of suramin, an enzyme inhibitor and an uncoupler of G protein from receptors, on the myotoxic activity in mice of different crotalid snake venoms (A.c. laticinctus, C.v. viridis, C.d. terrificus, B. jararacussu, B. moojeni, B. alternatus, B. jararaca, L. muta). Myotoxicity was evaluated in vivo by injecting im the venoms (0.5 or 1.0 mg/kg) dissolved in physiological saline solution (0.1 ml) and measuring plasma creatine kinase (CK) activity. Two experimental approaches were used in mice (N = 5 for each group). In protocol A, 1 mg of each venom was incubated with 1.0 mg suramin (15 min, 37ºC, in vitro), and then injected im into the mice at a dose of 1.0 mg/kg (in vivo). In protocol B, venoms, 1.0 mg/kg, were injected im 15 min prior to suramin (1.0 mg/kg, iv). Before and 2 h after the im injection blood was collected by orbital puncture. Plasma was separated and stored at 4ºC for determination of CK activity using a diagnostic kit from Sigma. Preincubation of some venoms (C.v. viridis, A.c. laticinctus, C.d. terrificus and B. jararacussu) with suramin reduced (37-76%) the increase in plasma CK, except for B. alternatus, B. jararaca or L. muta venoms. Injection of suramin after the venom partially protected (34-51%) against the myotoxicity of B. jararacussu, A.c. laticinctus and C.d. terrificus venom, and did not protect against C.v. viridis, L. muta, B. moojeni, B. alternatus or B. jararaca venoms. These results show that suramin has an antimyotoxic effect against some, but not all the North and South American crotalid snake venoms studied here.
Resumo:
Neutralization of hyperalgesia induced by Bothrops jararaca and B. asper venoms was studied in rats using bothropic antivenom produced at Instituto Butantan (AVIB, 1 ml neutralizes 5 mg B. jararaca venom) and polyvalent antivenom produced at Instituto Clodomiro Picado (AVCP, 1 ml neutralizes 2.5 mg B. aspar venom). The intraplantar injection of B. jararaca and B. asper venoms caused hyperalgesia, which peaked 1 and 2 h after injection, respectively. Both venoms also induced edema with a similar time course. When neutralization assays involving the independent injection of venom and antivenom were performed, the hyperalgesia induced by B. jararaca venom was neutralized only when bothropic antivenom was administered iv 15 min before venom injection, whereas edema was neutralized when antivenom was injected 15 min or immediately before venom injection. On the other hand, polyvalent antivenom did not interfere with hyperalgesia or edema induced by B. asper venom, even when administered prior to envenomation. The lack of neutralization of hyperalgesia and edema induced by B. asper venom is not attributable to the absence of neutralizing antibodies in the antivenom, since neutralization was achieved in assays involving preincubation of venom and antivenom. Cross-neutralization of AVCP or AVIB against B. jararaca and B. asper venoms, respectively, was also evaluated. Only bothropic antivenom partially neutralized hyperalgesia induced by B. asper venom in preincubation experiments. The present data suggest that hyperalgesia and edema induced by Bothrops venoms are poorly neutralized by commercial antivenoms even when antibodies are administered immediately after envenomation.
Resumo:
Ipomoea imperati (Convolvulaceae) lives on the sandy shores of the Brazilian coast and in other areas of the world. The anti-inflammatory activity of a methanol-water extract of the leaves of I. imperati was investigated in experimental models of acute and subchronic inflammation. Topical application of the extract (10 mg/ear) inhibited mouse ear edema induced by croton oil (89.0 ± 1.3% by the lipid fraction with an IC50 of 3.97 mg/ear and 57.0 ± 1.3% by the aqueous fraction with an IC50 of 3.5 mg/ear) and arachidonic acid (42.0 ± 2.0% with an IC50 of 4.98 mg/ear and 31.0 ± 2.0% with an IC50 of 4.72 mg/ear). Phospholipase A2, purified from Apis mellifera bee venom, was also inhibited by the extract (5.0 mg/ml lipid and aqueous fraction) in vitro in a dose-dependent manner (85% by the lipid fraction with an IC50 of 3.22 mg/ml and 25% by the aqueous fraction with an IC50 of 3.43 mg/ml). The methanol-water extract of I. imperati (1000 mg/kg) administered by the oral route also inhibited the formation of cotton pellet-induced granulomas (73.2 ± 1.2% by the lipid fraction and 56.14 ± 2.7% by the aqueous fraction) and did not cause gastric mucosal lesions. I. imperati extracts (10 mg/ml) also inhibited in a dose-dependent manner the muscle contractions of guinea pig ileum induced by acetylcholine and histamine (IC50 of 1.60 mg/ml for the lipid fraction and 4.12 mg/ml for the aqueous fraction). These results suggest the use of I. imperati as an anti-inflammatory and antispasmodic agent in traditional medicine.
Resumo:
Serratia marcescens cytotoxin was purified to homogeneity by ion-exchange chromatography on a DEAE Sepharose Fast Flow column, followed by gel filtration chromatography on a Sephadex G100 column. The molecular mass of the cytotoxin was estimated to be about 50 kDa. Some biological properties of the cytotoxin were analyzed and compared with well-characterized toxins, such as VT1, VT2 and CNF from Escherichia coli and hemolysin produced by S. marcescens. The sensitivity of the cell lines CHO, HeLa, HEp-2, Vero, BHK-21, MA 104 and J774 to the cytotoxin was determined by the cell viability assay using neutral red. CHO and HEp-2 were highly sensitive, with massive cellular death after 1 h of treatment, followed by BHK-21, HeLa, Vero and J774 cells, while MA 104 was insensitive to the toxin. Cytotoxin induced morphological changes such as cell rounding with cytoplasmic retraction and nuclear compactation which were evident 15 min after the addition of cytotoxin. The cytotoxic assays show that 15 min of treatment with the cytotoxin induced irreversible intoxication of the cells, determined by loss of cell viability. Concentrations of 2 CD50 (0.56 µg/ml) of purified cytotoxin did not present any hemolytic activity, showing that the cytotoxin is distinct from S. marcescens hemolysin. Antisera prepared against S. marcescens cytotoxin did not neutralize the cytotoxic activity of VT1, VT2 or CNF toxin, indicating that these toxins do not share antigenic determinants with cytotoxin. Moreover, we did not detect gene sequences for any of these toxins in S. marcescens by PCR assay. These results suggest that S. marcescens cytotoxin is not related to any of these toxins from E. coli.