125 resultados para True Reaction Rate
Resumo:
This paper deals with growth rates of trees > 5cm dbh over an eight-year period from 257 species at the Tapajós National Forest. The discussion is centred on the behaviour of the forest after logging. Permanent sample plots were established in 1981 and measured at the first time. The area was logged in 1982. Measurements after logging occurred in 1983, 1987 and 1989. Considering all species together, diameter increment was similar for both intensities of logging until five years after logging. Light-demanding species showed significantly higher growth rates than shade-tolerant species in the logged forest, with greater increment in the heavier treatment intensity. Commercial species also had higher growth rates in the heavier logged area, although those were significantly different only in the period from one to five years after logging. In the undisturbed forest, growth rates increased with increasing dbh size. At species level, growth rate varied between and within treatments, as well as between trees within species, depending mainly on degree of canopy opening. The logging favoured the growth of commercial species, chiefly the light-demanders. Therefore, if the same growth conditions continue being given, for example by silvicultural treatments, to those species of commercial interest, the forest would reach a stock available for harvesting around year 30 after logging. However, the high variation in increment rates indicates that an eight-year period is not sufficient to allow predictions on cutting cycles or polycyclic management systems for the study forest.
Resumo:
A multilocus mixed-mating model was used to evaluate the mating system of a population of Couratari multiflora, an emergent tree species found in low densities (1 individual/10 ha) in lowland forests of central Amazonia. We surveyed and observed phenologically 41 trees in an area of 400 ha. From these, only four mother trees were analyzed here because few of them set fruits, which also suffered high predation. No difference was observed between the population multilocus outcrossing rate (t mp = 0.953 ± 0.040) and the average single locus rate (t sp = 0.968 ± 0.132). The four mother trees were highly outcrossed (t m ~ 1). Two out of five loci showed departures from the Hardy-Weinberg Equilibrium (HWE) expectations, and the same results occurred with the mixed-mating model. Besides the low number of trees analyzed, the proportion of loci in HWE suggests random mating in the population. However, the pollen pool was heterogeneous among families, probably due to both the small sample number and the flowering of trees at different times of the flowering season. Reproductive phenology of the population and the results presented here suggest, at least for part of the population, a long-distance pollen movement, around 1,000 m.
Resumo:
Light and water are important factors that may limit the growth and development of higher plants. The aim of this study was to evaluate photosynthetic parameters and growth in seedlings of Bertholletia excelsa and Carapa guianensis in response to pre-acclimation to full sunlight and mild water stress. I used six independent pre-acclimation treatments (0, 90 (11h15-12h45), 180 (10h30-13h30), 360 (09h00-15h00), 540 (07h30-16h30) and 720 min (06h00-18h00)) varying the time of exposure to full sunlight (PFS) during 30 days, followed by whole-day outdoor exposure for 120 days. Before PFS, the plants were kept in a greenhouse at low light levels (0.8 mol m-2 day-1). The PFS of 0 min corresponded to plants constantly kept under greenhouse conditions. From the beginning to the end of the experiment, each PFS treatment was submitted to two water regimes: moderate water stress (MWS, pre-dawn leaf water potential (ΨL) of -500 to -700 kPa) and without water stress (WWS, ΨL of -300 kPa, soil kept at field capacity). Plants under MWS received only a fraction of the amount of water applied to the well-watered ones. At the end of the 120-day-period under outdoor conditions, I evaluated light saturated photosynthesis (Amax), stomatal conductance (g s), transpiration (E) and plant growth. Both Amax and g s were higher for all plants under the PFS treatment. Stem diameter growth rate and Amax were higher for C. guianensis subjected to MWS than in well-watered plants. The contrary was true for B. excelsa. The growth of seedlings was enhanced by exposure to full sunlight for 180 minutes in both species. However, plants of B. excelsa were sensitive to moderate water stress. The higher photosynthetic rates and faster growth of C. guianensis under full sun and moderate water stress make this species a promissory candidate to be tested in reforestation programs.
Resumo:
Objetivo Adaptar para o Brasil uma versão portuguesa do Caregiver Reaction Assessment (CRA) e gerar indicadores preliminares de validade e fidedignidade para sua aplicação em cuidadores de pacientes oncológicos internados. Métodos Participaram voluntariamente 53 cuidadores, que responderam a um questionário sociodemográfico, ao CRA e à Escala de Bem-Estar Psicológico (EBEP). A unidimensionalidade e a homogeneidade dos escores do CRA foram avaliadas por meio de análise de componentes principais e de consistência interna, respectivamente. Correlações de Pearson entre escores do CRA e EBEP foram examinadas e utilizadas como indicadores de validade divergente e de construto. Resultados As cinco escalas que compõem o CRA apresentaram bons níveis de unidimensionalidade e homogeneidade, porém as escalas de impacto nas finanças e impacto na saúde obtiveram alfas insuficientes (< 0,7). O escore total do CRA apresentou alfa elevado (0,886). Correlações entre o CRA e a EBEP produziram coeficientes teoricamente interpretáveis, com magnitudes variando entre nulas e moderadas. Conclusão O CRA apresentou bons indicadores de validade e fidedignidade. Algumas adaptações em relação ao conteúdo de determinados itens se mostram, todavia, necessárias, a fim de serem calibradas ao contexto de pessoas atendidas por serviços subsidiados pelo Sistema Único de Saúde.
Resumo:
PURPOSE: To assess the presence and the prevalence of arrhythmias and the variability of the heart rate in the medium-term postoperative period following the maze procedure for chronic atrial fibrillation (AF). METHODS: Seventeen patients with a mean age of 51.7±12.9 years, who previously underwent the maze procedure without cryoablation for chronic atrial fibrillation, were evaluated with the 24 hour electrocardiogram (ECG) - Holter monitoring from the 6th month after the operation. Valvular and coronary procedures were concomitantly performed. RESULTS: The mean heart rate during Holter monitoring was 82±8bpm; the maximal heart rate was 126 ± 23bpm and the minimal heart rate 57±7bpm. Sinus rhythm was found in 10 (59%) patients and atrial rhythm was found in 7 (41%). Supraventricular extrasystoles had a rate of 2.3±5.5% of the total number of heartbeats and occurred in 16 (94%) patients. Six (35%) patients showed nonsustained atrial tachycardia. Ventricular extrasystoles, with a rate of 0.8±0.5% of the total heartbeats, occurred in 14 (82%) patients. The chronotropic competence was normal in 9 (53%) patients and attenuated in 8 (47%). The atrioventricular conduction (AV) was unchanged in 13 (76%) patients and there were 4 (24%) cases of first degree atrioventricular block (AVB). CONCLUSION: After the maze procedure, the values for the mean heart rate, AV conduction and chronotropic competence approach the normal range, although some cases show attenuation of the chronotropic response, first degree AV block or benign arrhythmias.
Resumo:
Background: When performing the Valsalva maneuver (VM), adults and preadolescents produce the same expiratory resistance values. Objective: To analyze heart rate (HR) in preadolescents performing VM, and propose a new method for selecting expiratory resistance. Method: The maximal expiratory pressure (MEP) was measured in 45 sedentary children aged 9-12 years who subsequently performed VM for 20 s using an expiratory pressure of 60%, 70%, or 80% of MEP. HR was measured before, during, and after VM. These procedures were repeated 30 days later, and the data collected in the sessions (E1, E2) were analyzed and compared in periods before, during (0-10 and 10-20 s), and after VM using nonparametric tests. Results: All 45 participants adequately performed VM in E1 and E2 at 60% of MEP. However, only 38 (84.4%) and 25 (55.5%) of the participants performed the maneuver at 70% and 80% of MEP, respectively. The HR delta measured during 0-10 s and 10-20 s significantly increased as the expiratory effort increased, indicating an effective cardiac autonomic response during VM. However, our findings suggest the VM should not be performed at these intensities. Conclusion: HR increased with all effort intensities tested during VM. However, 60% of MEP was the only level of expiratory resistance that all participants could use to perform VM. Therefore, 60% of MEP may be the optimal expiratory resistance that should be used in clinical practice.
Resumo:
Background: Heart rate variability (HRV) is a marker of autonomic dysfunction severity. The effects of physical training on HRV indexes in Chagas heart disease (CHD) are not well established. Objective: To evaluate the changes in HRV indexes in response to physical training in CHD. Methods: Patients with CHD and left ventricular (LV) dysfunction, physically inactive, were randomized either to the intervention (IG, N = 18) or control group (CG, N = 19). The IG participated in a 12-week exercise program consisting of 3 sessions/week. Results: Mean age was 49.5 ± 8 years, 59% males, mean LVEF was 36.3 ± 7.8%. Baseline HRV indexes were similar between groups. From baseline to follow-up, total power (TP): 1653 (IQ 625 - 3418) to 2794 (1617 - 4452) ms, p = 0.02) and very low frequency power: 586 (290 - 1565) to 815 (610 - 1425) ms, p = 0.047) increased in the IG, but not in the CG. The delta (post - pre) HRV indexes were similar: SDNN 11.5 ± 30.0 vs. 3.7 ± 25.1 ms. p = 0.10; rMSSD 2 (6 - 17) vs. 1 (21 - 9) ms. p = 0.43; TP 943 (731 - 3130) vs. 1780 (921 - 2743) Hz. p = 0.46; low frequency power (LFP) 1.0 (150 - 197) vs. 60 (111 - 146) Hz. p = 0.85; except for high frequency power, which tended to increase in the IG: 42 (133 - 92) vs. 79 (61 - 328) Hz. p = 0.08). Conclusion: In the studied population, the variation of HRV indexes was similar between the active and inactive groups. Clinical improvement with physical activity seems to be independent from autonomic dysfunction markers in CHD.
Resumo:
Background: Ivabradine is a novel specific heart rate (HR)-lowering agent that improves event-free survival in patients with heart failure (HF). Objectives: We aimed to evaluate the effect of ivabradine on time domain indices of heart rate variability (HRV) in patients with HF. Methods: Forty-eight patients with compensated HF of nonischemic origin were included. Ivabradine treatment was initiated according to the latest HF guidelines. For HRV analysis, 24-h Holter recording was obtained from each patient before and after 8 weeks of treatment with ivabradine. Results: The mean RR interval, standard deviation of all normal to normal RR intervals (SDNN), the standard deviation of 5-min mean RR intervals (SDANN), the mean of the standard deviation of all normal-to-normal RR intervals for all 5-min segments (SDNN index), the percentage of successive normal RR intervals exceeding 50 ms (pNN50), and the square root of the mean of the squares of the differences between successive normal to normal RR intervals (RMSSD) were low at baseline before treatment with ivabradine. After 8 weeks of treatment with ivabradine, the mean HR (83.6 ± 8.0 and 64.6 ± 5.8, p < 0.0001), mean RR interval (713 ± 74 and 943 ± 101 ms, p < 0.0001), SDNN (56.2 ± 15.7 and 87.9 ± 19.4 ms, p < 0.0001), SDANN (49.5 ± 14.7 and 76.4 ± 19.5 ms, p < 0.0001), SDNN index (24.7 ± 8.8 and 38.3 ± 13.1 ms, p < 0.0001), pNN50 (2.4 ± 1.6 and 3.2 ± 2.2 %, p < 0.0001), and RMSSD (13.5 ± 4.6 and 17.8 ± 5.4 ms, p < 0.0001) substantially improved, which sustained during both when awake and while asleep. Conclusion: Our findings suggest that treatment with ivabradine improves HRV in nonischemic patients with HF.
Resumo:
Background:Autonomic dysfunction (AD) is highly prevalent in hemodialysis (HD) patients and has been implicated in their increased risk of cardiovascular mortality.Objective:To correlate heart rate variability (HRV) during exercise treadmill test (ETT) with the values obtained when measuring functional aerobic impairment (FAI) in HD patients and controls.Methods:Cross-sectional study involving HD patients and a control group. Clinical examination, blood sampling, transthoracic echocardiogram, 24-hour Holter, and ETT were performed. A symptom-limited ramp treadmill protocol with active recovery was employed. Heart rate variability was evaluated in time domain at exercise and recovery periods.Results:Forty-one HD patients and 41 controls concluded the study. HD patients had higher FAI and lower HRV than controls (p<0.001 for both). A correlation was found between exercise HRV (SDNN) and FAI in both groups. This association was independent of age, sex, smoking, body mass index, diabetes, and clonidine or beta-blocker use, but not of hemoglobin levels.Conclusion:No association was found between FAI and HRV on 24-hour Holter or at the recovery period of ETT. Of note, exercise HRV was inversely correlated with FAI in HD patients and controls. (Arq Bras Cardiol. 2015; [online]. ahead print, PP.0-0)
Resumo:
Background:Diabetes affects approximately 250 million people in the world. Cardiovascular autonomic neuropathy is a common complication of diabetes that leads to severe postural hypotension, exercise intolerance, and increased incidence of silent myocardial infarction.Objective:To determine the variability of heart rate (HR) and systolic blood pressure (SBP) in recently diagnosed diabetic patients.Methods:The study included 30 patients with a diagnosis of type 2 diabetes of less than 2 years and 30 healthy controls. We used a Finapres® device to measure during five minutes beat-to-beat HR and blood pressure in three experimental conditions: supine position, standing position, and rhythmic breathing at 0.1 Hz. The results were analyzed in the time and frequency domains.Results:In the HR analysis, statistically significant differences were found in the time domain, specifically on short-term values such as standard deviation of NN intervals (SDNN), root mean square of successive differences (RMSSD), and number of pairs of successive NNs that differ by more than 50 ms (pNN50). In the BP analysis, there were no significant differences, but there was a sympathetic dominance in all three conditions. The baroreflex sensitivity (BRS) decreased in patients with early diabetes compared with healthy subjects during the standing maneuver.Conclusions:There is a decrease in HR variability in patients with early type 2 diabetes. No changes were observed in the BP analysis in the supine position, but there were changes in BRS with the standing maneuver, probably due to sympathetic hyperactivity.
Resumo:
Abstract Background: Studies have questioned the downward trend in mortality from cardiovascular diseases (CVD) in Brazil in recent years. Objective: to analyze recent trends in mortality from ischemic heart disease (IHD) and stroke in the Brazilian population. Methods: Mortality and population data were obtained from the Brazilian Institute of Geography and Statistics and the Ministry of Health. Risk of death was adjusted by the direct method, using as reference the world population of 2000. We analyzed trends in mortality from CVD, IHD and stroke in women and men in the periods of 1980-2006 and 2007-2012. Results: there was a decrease in CVD mortality and stroke in women and men for both periods (p < 0.001). Annual mortality variations for periods 1980-2006 and 2007-2012 were, respectively: CVD (total): -1.5% and -0.8%; CVD men: -1.4% and -0.6%; CVD women: -1.7% and -1.0%; DIC (men): -1.1% and 0.1%; stroke (men): -1.7% and -1.4%; DIC (women): -1.5% and 0.4%; stroke (women): -2.0% and -1.9%. From 1980 to 2006, there was a decrease in IHD mortality in men and women (p < 0.001), but from 2007 to 2012, changes in IHD mortality were not significant in men [y = 151 + 0.04 (R2 = 0.02; p = 0.779)] and women [y = 88-0.54 (R2 = 0.24; p = 0.320). Conclusion: Trend in mortality from IHD stopped falling in Brazil from 2007 to 2012.
Resumo:
A preliminary account on the normal development of the imaginai discs in holometabolic Insects is made to serve as an introduction to the study of the hereditary homoeosis. Several facts and experimental data furnished specially by the students of Drosophila are brought here in searching for a more adequate explanation of this highly interesting phenomenon. The results obtained from the investigations of different homoeotic mutants are analysed in order to test Goldschmidt's theory of homoeosis. Critical examination of the basis on which this theory was elaborated are equally made. As a result from an extensive theoretical consideration of the matter and a long discussion of the most recent papers on this subject the present writer concludes that the Goldschmidt explanation of the homoeotic phenomena based on the action of diffusing substances produced by the genes, the "evocators", and on the alteration of the normal speed of maturation of the imaginai discs equally due to the activity of the genes, could not be proved and therefore should be abandoned. In the same situation is any other explanation like that of Waddington or Villee considered as fundamentally identical to that of Goldschmidt. In order to clear the problem of homoeosis in terms which seem to put the phenomenon in complete agreement with the known facts the present writer elaborated a theory first published a few years ago (1941) based entirely on the assumption that the imaginai discs are specifically determined by some kind of substances, probably of chemical nature, contained in the cytoplam of the cells entering in the consti- tution of each individual disc. These substances already present in the blastem of the egg in which they are distributed in a definite order, pass to different cells at the time the blastem is transformed into blastoderm. These substances according to their organogenic potentiality may be called antenal-substance, legsubstance, wing-substance, eye-substance, etc. The hipoderm of the embryo resulting from the multiplication of the blastoderm cells would be constituted by a series of cellular areas differing from each other in their particular organoformative capacity. Thus the hypoderm giving rise to the imaginai discs, it follows that each disc must have the same organogenic power of the hypodermal area it came from. Therefore the discs i*re determinated since their origin by substances enclosed in the cytoplasm of their cells and consequently can no longer alter their potentiality. When an antennal disc develops into a leg one can conclude that this disc in spite of its position in the body of the larva is not, properly speaking, an antennal disc but a true leg disc whose cells instead of having in their cytoplasm the antennal substance derived from the egg blastem have in its place the leg-substance. Now, if a disc produces a tarsus or an antenna or even a compound appendage partly tarsus-like, partly antenna-like, it follows tha,t both tarsal and antennal substances are present in it. The ultimate aspect of the compound structure depends upon the reaction of each kind of substance to the different causes influencing development. For instance, temperature may orient the direction of development either lowards arista or tarsus, stimulating, or opposing to the one or the other of these substances. Confering to the genes the faculty of altering the constitution of the substances containing in the cytoplasm forming the egg blastem or causing transposition of these substances from one area to another or promoting the substitution of a given substance by a different one, the hereditary homoeocis may be easily explained. However, in the opinion of the present writer cytoplasm takes the initiative in all developmental process, provoking the chromosomes to react specifically and proportionally. Accordingly, the mutations causing homoeotic phenomena may arise independently at different rime in the cytoplasm and in the chromosomes. To the part taken by the chromosomes in the manifestation of the homoeotic characters is due the mendalian ratio observed in homoeotic X normal crosses. Expression, in itself, is mainly due to the proportion of the different substances in the cells of the affected discs. Homoeotic phenomena not presenting mendelian ratio may appear as consequence of cytoplasmic mutation not accompanied by chromosomal mutation. The great variability in the morphology of the homoeotic characteres, some individual being changed towards an extreme expression of the mutant phenotype while others in spite of their homozigous constitution cannot be distinguished from the normal ones, strongly supports the interpretation based on the relative proportion of the determining substances in the discs. To the same interpretation point also asymetry and other particularities observed in the exteriorization of the phenomenon. In conformity with this new conception homoeosis should not prove homology of Insect appendages (Villee 1942) since a more replacement of substances may cause legs to develop in substitution of the wings, as it was already observed (requiring confirmation in the opinion of Bateson 1894, p. 184) and no one would conclude for the homology of these organs in the usual meaning of the term.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.