110 resultados para Surgical approaches
Resumo:
Lipids used in nutritional support of surgical or critically ill patients have been based on soybean oil, which is rich in the n-6 fatty acid linoleic acid (18:2n-6). Linoleic acid is the precursor of arachidonic acid (20:4n-6). In turn, arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. There is a view that an excess of n-6 fatty acids should be avoided since this could contribute to a state where physiological processes become dysregulated. One alternative is the use of fish oil. The rationale of this latter approach is that fish oil contains long chain n-3 fatty acids, such as eicosapentaenoic acid. When fish oil is provided, eicosapentaenoic acid is incorporated into cell membrane phospholipids, partly at the expense of arachidonic acid. Thus, there is less arachidonic acid available for eicosanoid synthesis. Hence, fish oil decreases production of prostaglandins like PGE2 and of leukotrienes like LTB4. Thus, n-3 fatty acids can potentially reduce platelet aggregation, blood clotting, smooth muscle contraction, and leukocyte chemotaxis, and can modulate inflammatory cytokine production and immune function. These effects have been demonstrated in cell culture, animal feeding and healthy volunteer studies. Fish oil decreases the host metabolic response and improves survival to endotoxin in laboratory animals. Recently clinical studies performed in various patient groups have indicated benefit from this approach.
Resumo:
The complex nature of spinal cord injury appears to demand a multifactorial repair strategy. One of the components that will likely be included is an implant that will fill the area of lost nervous tissue and provide a growth substrate for injured axons. Here we will discuss the role of Schwann cells (SCs) in cell-based, surgical repair strategies of the injured adult spinal cord. We will review key studies that showed that intraspinal SC grafts limit injury-induced tissue loss and promote axonal regeneration and myelination, and that this response can be improved by adding neurotrophic factors or anti-inflammatory agents. These results will be compared with several other approaches to the repair of the spinal cord. A general concern with repair strategies is the limited functional recovery, which is in large part due to the failure of axons to grow across the scar tissue at the distal graft-spinal cord interface. Consequently, new synaptic connections with spinal neurons involved in motor function are not formed. We will highlight repair approaches that did result in growth across the scar and discuss the necessity for more studies involving larger, clinically relevant types of injuries, addressing this specific issue. Finally, this review will reflect on the prospect of SCs for repair strategies in the clinic.
Resumo:
Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multipinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target’s radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals.
Resumo:
Human epidermal growth factor receptor 2 (HER2) has been evaluated in breast cancer patients to identify those most likely to benefit from herceptin-targeted therapy. HER2 amplification, detected in 20-30% of invasive breast tumors, is associated with reduced survival and metastasis. The most frequently used technique for evaluating HER2 protein status as a routine procedure is immunohistochemistry (IHC). HER2 copy number alterations have also been evaluated by fluorescence in situ hybridization (FISH) in moderate immunoexpression (IHC 2+) cases. An alternative procedure to evaluate gene amplification is chromogenic in situhybridization (CISH), which has some advantages over FISH, including the correlation between HER2 status and morphological features. Other methodologies have also been used, such as silver-enhanced in situ hybridization (SISH) and quantitative real-time RT-PCR, to determine the number of HER2 gene copies and expression, respectively. Here we will present a short and comprehensive review of the current advances concerning HER2 evaluation in human breast cancer.
Resumo:
There is evidence for participation of peripheral β-adrenoceptors in delayed liquid gastric emptying (GE) induced in rats by dipyrone (Dp), 4-aminoantipyrine (AA), and antipyrine (At). The present study aimed to determine whether β-adrenoceptors are involved in delayed GE induced by phenylpyrazole derivatives and the role of the prevertebral sympathetic nervous system in this condition. Male Wistar rats weighing 220-280 g were used in the study. In the first experiment rats were intravenously pretreated with vehicle (V), atenolol 30 mg/kg (ATE, β1-adrenergic antagonist), or butoxamine 25 mg/kg (BUT, β2-adrenergic antagonist). In the second experiment, rats were pretreated with V or SR59230A 2 mg/kg (SRA, β3-adrenergic antagonist). In the third experiment, rats were subjected to surgical resection of the celiac-superior mesenteric ganglion complex or to sham surgery. The groups were intravenously treated with saline (S), 240 µmol/kg Dp, AA, or At, 15 min after pretreatment with the antagonists or V and nine days after surgery. GE was determined 10 min later by measuring the percentage of gastric retention (%GR) of saline labeled with phenol red 10 min after gavage. The %GR (means±SE, n=6) values indicated that BUT abolished the effect of Dp (BUT+Dp vs V+Dp: 35.0%±5.1% vs 56.4%±2.7%) and At (BUT+At vs V+At: 33.5%±4.7% vs 52.9%±2.6%) on GE, and significantly reduced (P<0.05) the effect of AA (BUT+AA vs V+AA: 48.0%±5.0% vs 65.2%±3.8%). ATE, SRA, and sympathectomy did not modify the effects of treatments. These results suggest that β2-adrenoceptor activation occurred in delayed liquid gastric emptying induced by the phenylpyrazole derivatives dipyrone, 4-aminoantipyrine, and antipyrine. Additionally, the released neurotransmitter did not originate in the celiac-superior mesenteric ganglion complex.