121 resultados para Sequential extraction
Resumo:
The objective of this study was to analyze the physicochemical properties and carotenoid levels of pequi oil obtained by different extraction methods and to evaluate the preservation of these properties and pigments during storage time. The pequi oil was obtained by solvent extraction, mechanical extraction, and hot water flotation. It was stored for over 180 days in an amber bottle at ambient conditions. Analyses for the determination of the acidity, peroxide, saponification and iodine values, coloration, total carotenoids, and β-carotene levels were conducted. The oil extraction with solvents produced the best yield and carotenoid levels. The oil obtained by mechanical extraction presented higher acidity (5.44 mg KOH.g-1) and peroxide values (1.07 mEq.kg-1). During the storage of pequi oil, there was an increase in the acidity and the peroxide values, darkening of the oil coloration, and a reduction of the carotenoid levels. Mechanical extraction is the less advantageous method for the conservation of the physicochemical properties and carotenoid levels in pequi oil.
Resumo:
This study aims to optimize an alternative method of extraction of carrageenan without previous alkaline treatment and ethanol precipitation using Response Surface Methodology (RSM). In order to introduce an innovation in the isolation step, atomization drying was used reducing the time for obtaining dry carrageenan powder. The effects of extraction time and temperature on yield, gel strength, and viscosity were evaluated. Furthermore, the extracted material was submitted to structural analysis, by infrared spectroscopy and nuclear magnetic resonance spectroscopy (¹H-NMR), and chemical composition analysis. Results showed that the generated regression models adequately explained the data variation. Carrageenan yield and gel viscosity were influenced only by the extraction temperature. However, gel strength was influenced by both, extraction time and extraction temperature. Optimal extraction conditions were 74 ºC and 4 hours. In these conditions, the carrageenan extract properties determined by the polynomial model were 31.17%, 158.27 g.cm-2, and 29.5 cP for yield, gel strength, and viscosity, respectively, while under the experimental conditions they were 35.8 ± 4.68%, 112.50 ± 4.96 g.cm-2, and 16.01 ± 1.03 cP, respectively. The chemical composition, nuclear magnetic resonance spectroscopy, and infrared spectroscopy analyses showed that the crude carrageenan extracted is composed mainly of κ-carrageenan.
Resumo:
The aim of this study was to extract and identify volatile compounds from pineapple residues generated during concentrated juice processing. Distillates of pineapple residues were obtained using the following techniques: simple hydrodistillation and hydrodistillation by passing nitrogen gas. The volatile compounds present in the distillates were captured by the solid-phase microextraction technique. The volatile compounds were identified in a system of high resolution gas chromatography system coupled with mass spectrometry using a polyethylene glycol polar capillary column as stationary phase. The pineapple residues constituted mostly of esters (35%), followed by ketones (26%), alcohols (18%), aldehydes (9%), acids (3%) and other compounds (9%). Odor-active volatile compounds were mainly identified in the distillate obtained using hydrodistillation by passing nitrogen gas, namely decanal, ethyl octanoate, acetic acid, 1-hexanol, and ketones such as γ-hexalactone, γ-octalactone, δ-octalactone, γ-decalactone, and γ-dodecalactone. This suggests that the use of an inert gas and lower temperatures helped maintain higher amounts of flavor compounds. These data indicate that pineapple processing residue contained important volatile compounds which can be extracted and used as aroma enhancing products and have high potential for the production of value-added natural essences.
Resumo:
The physiochemical and biological properties of honey are directly associated to its floral origin. Some current commonly used methods for identification of botanical origin of honey involve palynological analysis, chromatographic methods, or direct observation of the bee behavior. However, these methods can be less sensitive and time consuming. DNA-based methods have become popular due to their simplicity, quickness, and reliability. The main objective of this research is to introduce a protocol for the extraction of DNA from honey and demonstrate that the molecular analysis of the extracted DNA can be used for its botanical identification. The original CTAB-based protocol for the extraction of DNA from plants was modified and used in the DNA extraction from honey. DNA extraction was carried out from different honey samples with similar results in each replication. The extracted DNA was amplified by PCR using plant specific primers, confirming that the DNA extracted using the modified protocol is of plant origin and has good quality for analysis of PCR products and that it can be used for botanical identification of honey.
Resumo:
Orthogonal design was employed to study the effect of extraction time, temperature and liquid-to-solid ratio on the production of antioxidant polysaccharides from leaves of Gynura bicolor (PLG). Analysis of variance was performed on the data obtained. The most relevant variable was extraction time. A liquid-solid ratio of 30:1 (v/w), a temperature of 80 °C and an extraction time of 3 h were found to be optimal for PLG. The optimal extraction yield of 4.9% was obtained through additional verification test. Hydroxyl radical-scavenging activity, reducing power and ferrous ion chelating ability of PLG were determined. PLG possess concentration-dependent antioxidant potency and IC50 of PLG was 4.67, 0.24 and 4.31 mg/mL for hydroxyl radical-scavenging and ferric ion chelating abilities as well as reducing power, respectively. The results suggest that G. bicolor polysaccharides could be potential source of natural antioxidant and be contributor to the health benefits of G. bicolor.
Resumo:
Significant initiatives exist within the global food market to search for new, alternative protein sources with better technological, functional, and nutritional properties. Lima bean (Phaseolus lunatus L.) protein isolate was hydrolyzed using a sequential pepsin-pancreatin enzymatic system. Hydrolysis was performed to produce limited (LH) and extensive hydrolysate (EH), each with different degrees of hydrolysis (DH). The effects of hydrolysis were evaluated in vitro in both hydrolysates based on structural, functional and bioactive properties. Structural properties analyzed by electrophoretic profile indicated that LH showed residual structures very similar to protein isolate (PI), although composed of mixtures of polypeptides that increased hydrophobic surface and denaturation temperature. Functionality of LH was associated with amino acid composition and hydrophobic/hydrophilic balance, which increased solubility at values close to the isoelectric point. Foaming and emulsifying activity index values were also higher than those of PI. EH showed a structure composed of mixtures of polypeptides and peptides of low molecular weight, whose intrinsic hydrophobicity and amino acid profile values were associated with antioxidant capacity, as well as inhibiting angiotensin-converting enzyme. The results obtained indicated the potential of Phaseolus lunatus hydrolysates to be incorporated into foods to improve techno-functional properties and impart bioactive properties.
Resumo:
The chemical analysis of flesh and seed of date palm fruit (Kentichi) was evaluated. Carbohydrates were the predominant component in all studied date cultivars (~78.69-83.46 g/100g dry matter), followed by moisture content (~9.23-11.17%), along with moderate amount of fat (~0.56-7.10 g/100g dry matter), protein (~2.16-2.80 g/100g dry matter), and ash (~1.18-1.64 g/100 g dry matter). Some antioxidants (Ascorbic acid, total phenolic, total flavonoid, chlorophyll and carotenoids) were found in different values in both date fruit and seed. The physicochemical properties and antioxidant activity of both flesh and seed oil which was extracted using Hexane, Soxhlet and Modified Bligh - Dyer extraction methods were determined. The experimental results showed that temperature, different solvents and extraction time had significant effect on the yield of the date palm oil and physicochemical properties. Date Flesh oil showed an important free radical scavenging activity towards 1-1-diphenyl-2-picrylhydrazyl (DPPH) free radical.
Resumo:
β-glucan is currently one of the most important bioactive substances. Hence, there is a growing interest in the production of various foods containing β-glucan. The study examines the influence of the degree of wheat flour extraction in the quality of breads with high β-glucan content. Rheological tests were conducted on dough. Volume, mass, color and texture of bread were measured after baking. We observed that increasing the degree of extraction caused an increase in the storage and loss modulus. All of the bread made from the different flours were smaller in volume after the addition of β-glucan, although the yield increased. The crumb color of β-glucan-added breads was darker than the control samples. Control samples were higher in textural parameters (firmness, gumminess and chewiness). β-glucan-added samples had decreased porosity. The results revealed that using very strong flour with a high protein content results in a high quality β-glucan bread with a higher nutritional value due to the high total dietary fiber and β-glucan content.
Resumo:
The goal of this study was to determine the chemical composition of cashew apples agro-industrial residue and optimize the process of polyphenols extraction in this residue. The extraction process conditions were defined using a 24-1 fractional factorial experimental design using acetone and methanol as solvents. The independent variables were: time (30 to 90 min), temperature (30 to 50 °C), solvent concentrations (50% to 90%), agitation speed (100 to 300 rpm); the dependent variables were: total phenolic content and DPPH scavenging capacity. The optimized process was carried out by applying the Central Composite Rotational Design (CCRD) considering the results obtained with the 24-1 fractional factorial experimental design. The residue presented bioactive compounds in its composition, with emphasis on the content of total phenolic compounds (1975.64 mg/ 100 g). The extraction process was not affected by methanol; however, acetone affected the amounts of extracted phytochemicals. Extracts with high levels of polyphenols and strong DPPH scavenging capacity (> 80%) were obtained using 55% acetone, 30 minutes, 30 °C, and 150 rpm. The results showed that cashew apple residue is a potential natural source of bioactive compounds with strong antioxidant capacity. These compounds could be used partially or totally to replace synthetic antioxidants.
Resumo:
AbstractThe extraction conditions (liquid-solid ratio, temperature and time) of antioxidant polysaccharides from Auricularia auricula fruiting bodies (AAFB) were optimized using response surface methodology (RSM). The Box-Behnken experimental results showed the optimum extraction conditions as follows: a liquid-solid ratio of 38.77 mL/g, a temperature of 93.98 °C and a time of 3.41 h. Under these conditions, the maximal polysaccharide yield was 10.46 g/100 g. In addition, AAFB polysaccharides exhibited stronger antioxidant activities by evaluating of Fe2+-chelating ability and hydroxyl radical scavenging activity with IC50 values of 0.43 and 0.38 mg/mL, respectively. These results indicated that AAFB polysaccharides might be potentially used as a natural antioxidant.
Resumo:
AbstractThe current study was employed to assess the influence of the different extraction methods on total tocols, γ-oryzanol content, and antioxidant properties of Chiang Mai Black rice, Mali Red rice, and Suphanburi-1 Brown rice bran oil. Rice bran oil (RBO) was extracted by Hexane, Hot pressed, Cold pressed, and Supercritical Fluid Extraction (SFe) methods. High yield of RBO was extracted by hexane and SFe methods. Total and subgroups of tocols, and γ-oryzanol content were determined by HPLC. The hexane extracted sample accounts for high content of γ-oryzanol and tocols. Besides, all of RBO extracts contain a significantly high amount of γ-tocotrienol. In vitro antioxidant assay results indicated that superior quality of oil was recovered by hexane extraction. The temperature in the extraction process also affects the value of the oil. Superior quality of oil was recovered by hexane extraction, in terms of phytochemical contents and antioxidant properties compared to other tested extraction methods. Further, thorough study of factors compromising the quality and quantity of RBO recovery is required for the development of enhanced functional foods and other related products.
Resumo:
AbstractAnthocyanins are present in high concentrations in Chinese bayberry, Myrica rubra Sieb. & Zucc. Herein, a microwave-assisted extraction was used to extract the anthocyanins from Chinese bayberry. The HPLC chromatogram of the extracts showed that the anthocyanin components were slightly hydrolysed during the extraction process. Further experiments confirmed that microwave irradiation slightly hydrolysed cyanidin-3-O-glucoside to cyanidin, but did not significantly influence the antioxidant activity of the extracts. Optimized extraction conditions for total anthocyanin content were a solid-to-liquid ratio, extraction temperature, and extraction time of 1:50, 80 °C, and 15 min, respectively. Under these conditions, the anthocyanin content was 2.95 ± 0.08 mg·g−1, and the antioxidant activity yield was 279.96 ± 0.1 μmol.·g−1 Trolox equivalent on a dry weight basis. These results indicated that microwave-assisted extraction was a highly efficient extraction method with reduced processing time. However, under some extraction conditions it could damage the anthocyanins. These results provide an important guide for the application of microwave extraction.
Resumo:
Abstract A novel trypsin inhibitor of protease (CqTI) was purified from Chenopodium quinoa seeds. The optimal extracting solvent was 0.1M NaCl pH 6.8 (p < 0.05). The extraction time of 5h and 90 °C was optimum for the recovery of the trypsin inhibitor from C. quinoa seeds. The purification occurred in gel-filtration and reverse phase chromatography. CqTI presented active against commercial bovine trypsin and chymotrypsin and had a specific activity of 5,033.00 (TIU/mg), which was purified to 333.5-fold. The extent of purification was determined by SDS-PAGE. CqTI had an apparent molecular weight of approximately 12KDa and two bands in reduced conditions as determined by Tricine-SDS-PAGE. MALDI-TOF showed two peaks in 4,246.5 and 7,908.18m/z. CqTI presented high levels of essential amino acids. N-terminal amino acid sequence of this protein did not show similarity to any known protease inhibitor. Its activity was stable over a pH range (2-12), temperatures range (20-100 °C) and reducing agents.
Resumo:
Abstract The use of agroindustrial residues is an economical solution to industrial biotechnology. Coffee husk and pulp are abounding residues from coffee industry which can be used as substrates in solid state fermentation process, thus allowing a liberation and increase in the phenolic compound content with high added value. By employing statistical design, initial moisture content, pH value in the medium, and the incubation temperature were evaluated, in order to increase the polyphenol content in a process of solid state fermentation by Penicillium purpurogenum. The main phenolic compounds identified through HPLC in fermented coffee residue were chlorogenic acid, caffeic acid, and rutin. Data obtained through HPLC with the radical absorbance capacity assay suggest the fermented coffee husk and pulp extracts potential as a source of phenolic acids and flavonoids. Results showed good perspectives when using P. purpurogenum strain to enhance the liberation of phenolic compounds in coffee residues.
Resumo:
Abstract Optimization of polyphenols extraction from plum (Prunus salicina Lindl.) was evaluated using response surface methodology. The Box-Behnken experimental results showed the optimal conditions involved an extraction temperature of 59 °C, a sonication time of 47 min, and an ethanol concentration of 61% respectively. The maximum extraction yield of total polyphenols was 44.74 mg gallic acid equivalents per gram of dried plum at optimal conditions. Polyphenol extracts exhibited stronger antioxidant activities than Vc by evaluating of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical scavenging activity. Furthermore, polyphenol extracts (IC50 = 179 g/mL) showed obvious inhibitory effects on xanthine oxidase. These findings suggest that polyphenol extracts from P. salicina can be potentially used as natural antioxidant and xanthine oxidase inhibitory agents.