111 resultados para SEMI-VOLATILE ORGANIC COMPOUNDS
Resumo:
In the past few years, photoredox catalysis has become a powerful tool in the field of organic synthesis. Using this efficient method, it is possible to excite organic compounds from visible light and attain alternative mechanistic pathways for the formation of chemical bonds, a result which is not obtainable by classical methods. The rapid growth of work in the area of photoredox catalysis is due to its low cost, broad chemical utility protocols, and, especially, its relevancy from the green and sustainable chemistry viewpoints. Thus, this study proposes a brief theoretical discussion of and highlights recent advances in visible-light-induced photoredox catalysis through the analysis of catalytic cycles and intermediates.
Resumo:
The measurement of nuclear magnetic resonance parameters in an anisotropic media, such as residual dipolar coupling (RDC), has proven to be an excellent methodology for the refinement of chemical structures, being used as a complementary tool in the determination of the relative configuration, conformation, and constitution of organic compounds. In this study, we applied this methodology to determine the relative configuration of α-santonin, a natural product with four stereocenters, while assigning its prochiral methylene protons using only the RDCs obtained in a polyacrylonitrile polymer gel swollen in DMSO-d6.
Resumo:
An interesting practical experiment about the preparation of dye–sensitized solar cells (DSSC) using natural dyes were carried out by the undergraduate students in the chemistry course at UNICAMP . Natural dyes were extracted from blueberries (Vaccinium myrtillus L.), jabuticabas (Myrciaria cauliflora), raw and cooked beets (Beta vulgaris L.), and annattos (Bixa orellana L.), which were used to sensitize TiO2 films that composed the photoanode in the DSSC. A polymer electrolyte containing an iodide/triiodide redox couple was used in lieu of the use of liquid solutions to prevent any leakage in the devices. A maximum solar-to-electric energy conversion of 0.26 ± 0.02% was obtained for the solar cell prepared with annatto extracts. This experiment was an effective way to illustrate to the undergraduate students how to apply some of the chemical concepts that they learned during their chemistry course to produce electric energy from a clean and renewable energy source. Teachers could also exploit the basics of the electronic transitions in inorganic and organic compounds (e.g., metal-to-ligand charge transfer and ϖ-ϖ* transitions), thermodynamics (e.g., Gibbs free energy), acid–base reactions in the oxide solid surface and electrolyte, and band theory (i.e., the importance of the Fermi level energy).
Resumo:
The 2-methoxycinnamylidenepyruvic acid (2-MeO-HCP) was synthesized and characterized for nuclear magnetic resonance (¹H and 13C NMR), mass spectrometry (MS), Infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The application of DSC for purity determination is well documented in literature and is used in the analysis of pure organic compounds. The molecular geometry and vibrational frequencies of 2-MeO-HCP have been calculated.
Resumo:
The use of microorganisms to induce chemical modifications in organic molecules is a very useful tool in organic synthesis, to obtain biologically active substances. The fungus Cephalosporium aphidicola is known by its ability to hydroxylate several skeleton positions of many classes of organic compounds. In this work, the microbial transformation of ent-kaur-16-en-19-ol (1) by C. aphidicola, afforded two hydroxylated compounds, ent-kauran-16β,19-diol (2) and ent-kauran-16β,17,19-triol (3). Their structures were established by 1D and 2D-NMR studies. Both compounds were tested for their action on the growth of radical and shoot of Lactuca sativa.
Resumo:
Espinhaço and Mantiqueira are two mountain ranges of great importance in Brazil. In the uppermost parts of these areas, unique ecosystems occur, generally associated with rock outcrops, they are collectively called High Altitude Rocky Complexes. These environments show distinct soil and biota characteristics in relation to the surrounding biome. The soils are generally shallow, coarse textured, with high Al3+ and varying amounts of organic matter. Entisols, Inceptsols and Histosols are dominant, directly associated with the rock outcrops, and forming a complex mosaic of soils. Some of these soils are endemic, based on peculiar conditions of parent materials, topography and vegetation, and this pedodiversity is important for detecting unique and endangered soils. In these soils, organic matter is highly humified, with a great amount of soluble forms and conspicuous presence of charcoal. Spodic horizons and dark water rivers are typically associated with quartzite and quartzite outcrops, formed by illuviation of organic compounds, being less common in granitic rocks. The very low nutrient content of these soils and other environmental limitations required the development of specific physiological and morphological plant adaptations. Most high altitude environments are unstable under current climatic conditions, and anthropic interventions may be accelerating this process. Detailed soil surveys are necessary for a better understanding of the role of these soils in ecological processes and for the development of adequate conservation policies.