322 resultados para Rheumatic fever
Resumo:
We propose a method to analyse the 2009 outbreak in the region of Botucatu in the state of São Paulo (SP), Brazil, when 28 yellow fever (YF) cases were confirmed, including 11 deaths. At the time of the outbreak, the Secretary of Health of the State of São Paulo vaccinated one million people, causing the death of five individuals, an unprecedented number of YF vaccine-induced fatalities. We apply a mathematical model described previously to optimise the proportion of people who should be vaccinated to minimise the total number of deaths. The model was used to calculate the optimum proportion that should be vaccinated in the remaining, vaccine-free regions of SP, considering the risk of vaccine-induced fatalities and the risk of YF outbreaks in these regions.
Resumo:
Chikungunya virus (CHIKV) transmission has been detected in America in 2013 and recently reached south up to Bolivia, Brazil and Paraguay, bordering countries of Argentina. The presence of the mosquito Aedes aegyptiin half of the country together with the regional context drove us to make a rapid assessment of transmission risk. Temperature thresholds for vector breeding and for virus transmission, together with adult activity from the literature, were mapped on a monthly basis to estimate risk. Transmission of chikungunya byAe. aegyptiin the world was seen at monthly mean temperatures from 21-34ºC, with the majority occurring between 26-28ºC. In Argentina temperatures above 21ºC are observed since September in the northeast, expanding south until January and retreating back to the northeast in April. The maximum area under risk encompasses more than half the country and around 32 million inhabitants. Vector adult activity was registered where monthly means temperatures exceeded 13ºC, in the northeast all over the year and in the northern half from September-May. The models herein proposed show that conditions for transmission are already present. Considering the regional context and the historic inability to control dengue in the region, chikungunya fever illness seems unavoidable.
Resumo:
This randomised, double-blind, multicentre study with children nine-23 months old evaluated the immunogenicity of yellow fever (YF) vaccines prepared with substrains 17DD and 17D-213/77. YF antibodies were tittered before and 30 or more days after vaccination. Seropositivity and seroconversion were analysed according to the maternal serological status and the collaborating centre. A total of 1,966 children were randomised in the municipalities of the states of Mato Grosso do Sul, Minas Gerais and São Paulo and blood samples were collected from 1,714 mothers. Seropositivity was observed in 78.6% of mothers and 8.9% of children before vaccination. After vaccination, seropositivity rates of 81.9% and 83.2%, seroconversion rates of 84.8% and 85.8% and rates of a four-fold increase over the pre-vaccination titre of 77.6% and 81.8% were observed in the 17D-213/77 and 17DD subgroups, respectively. There was no association with maternal immunity. Among children aged 12 months or older, the seroconversion rates of 69% were associated with concomitant vaccination against measles, mumps and rubella. The data were not conclusive regarding the interference of maternal immunity in the immune response to the YF vaccine, but they suggest interference from other vaccines. The failures in seroconversion after vaccination support the recommendation of a booster dose in children within 10 years of the first dose.
Resumo:
In South America, yellow fever (YF) is an established infectious disease that has been identified outside of its traditional endemic areas, affecting human and nonhuman primate (NHP) populations. In the epidemics that occurred in Argentina between 2007-2009, several outbreaks affecting humans and howler monkeys (Alouatta spp) were reported, highlighting the importance of this disease in the context of conservation medicine and public health policies. Considering the lack of information about YF dynamics in New World NHP, our main goal was to apply modelling tools to better understand YF transmission dynamics among endangered brown howler monkey (Alouatta guariba clamitans) populations in northeastern Argentina. Two complementary modelling tools were used to evaluate brown howler population dynamics in the presence of the disease: Vortex, a stochastic demographic simulation model, and Outbreak, a stochastic disease epidemiology simulation. The baseline model of YF disease epidemiology predicted a very high probability of population decline over the next 100 years. We believe the modelling approach discussed here is a reasonable description of the disease and its effects on the howler monkey population and can be useful to support evidence-based decision-making to guide actions at a regional level.
Resumo:
The Rickettsia bacteria include the aetiological agents for the human spotted fever (SF) disease. In the present study, a SF groupRickettsia amblyommii related bacterium was detected in a field collected Amblyomma sculptum (Amblyomma cajennense species complex) tick from a Brazilian SF endemic site in southeastern Brazil, in the municipality of Juiz de Fora, state of Minas Gerais. Genetic analysis based on genes ompA,ompB and htrA showed that the detected strain, named R. amblyommii str. JF, is related to the speciesR. amblyommii.
Resumo:
Dengue is an acute febrile disease caused by the mosquito-borne dengue virus (DENV) that according to clinical manifestations can be classified as asymptomatic, mild or severe dengue. Severe dengue cases have been associated with an unbalanced immune response characterised by an over secretion of inflammatory cytokines. In the present study we measured type I interferon (IFN-I) transcript and circulating levels in primary and secondary DENV infected patients. We observed that dengue fever (DF) and dengue haemorrhagic fever (DHF) patients express IFN-I differently. While DF and DHF patients express interferon-α similarly (52,71 ± 7,40 and 49,05 ± 7,70, respectively), IFN- β were associated with primary DHF patients. On the other hand, secondary DHF patients were not able to secrete large amounts of IFN- β which in turn may have influenced the high-level of viraemia. Our results suggest that, in patients from our cohort, infection by DENV serotype 3 elicits an innate response characterised by higher levels of IFN- β in the DHF patients with primary infection, which could contribute to control infection evidenced by the low-level of viraemia in these patients. The present findings may contribute to shed light in the role of innate immune response in dengue pathogenesis.
Resumo:
In the search for new larvicides from plants, we have investigated the potential activity of the rotenoids deguelin (1), 12a-hydroxy-α-toxicarol (2) and tephrosin (3), isolated from the bioactive ethanol extract of roots of Tephrosia toxicaria Pers., against Aedes aegypti, the main vector of dengue. The absolute configuration of these compounds was determined by circular dichroism (CD) spectra. The LC50 values of the compounds evaluated justify the potential of T. toxicaria as a new natural larvicide.
Resumo:
An indirect enzyme linked immunoassay (ELISA-I) was developed and standardized for the serological diagnosis of classical swine fever (CSF). For the comparison, nine hundred and thirty-seven swine serum samples were tested by serum neutralization followed by immunoperoxidase staining (NPLA), considered as the standard. Of these, 223 were positive and 714 negative for neutralizing antibodies to classical swine fever virus (CSFV). In relation to the NPLA, the ELISA-I presented a 98.2% sensitivity; 92.86% specificity, 81.11% positive predictive value, 99.4% negative predictive value and a 94.1% precision. Statistical analysis showed a very strong correlation (r=0,94) between both tests. When compared to a commercially available ELISA kit, the performance of both, in relation to the NPLA, was similar. It was concluded that the ELISA-I is suitable for large scale screening of antibodies to classical swine fever virus, although it does not distinguish antibodies to classical swine fever virus from those induced by other pestiviruses.
Resumo:
An outbreak of Malignant Catarrhal Fever (MCF) resulted in death of five female buffaloes and one domestic cow from the same farm. Four buffaloes died 10-15 days after the appearance of clinical signs, while the fifth was euthanized in extremis, after similar clinical signs. Histopathological lesions included multifocal histiolymphocytic epicarditis, myocarditis and lymphocytic interstitial pneumonia, which are commonly seen in cases of MCF in buffaloes. Furthermore, lymphocytic vasculitis centered in the adventitia, with occasional fibrinoid necrosis in the muscular layer, was found in the kidneys, liver, spleen, lymph nodes and brain. Nucleotide sequencing of DNA fragments from the central nervous system amplified by PCR revealed 98% similarity with known OHV-2 sequences from Genbank. Additionally, PCR analysis also revealed the presence of OHV-2 DNA in the peripheral mononuclear blood cells of two clinically healthy buffaloes. The diagnosis of MCFwas based on epidemiological, clinical, gross and histopathological findings and on the results of a semi-nested PCR followed by nucleotide sequencing.
Resumo:
Molecular findings that confirmed the participation of ovine herpesvirus 2 (OVH-2) in the lesions that were consistent with those observed in malignant catarrhal fever of cattle are described. Three mixed-breed cattle from Rio Grande do Norte state demonstrated clinical manifestations that included mucopurulent nasal discharge, corneal opacity and motor incoordination. Routine necropsy examination demonstrated ulcerations and hemorrhage of the oral cavity, corneal opacity, and lymph node enlargement. Significant histopathological findings included widespread necrotizing vasculitis, non-suppurative meningoencephalitis, lymphocytic interstitial nephritis and hepatitis, and thrombosis. PCR assay performed on DNA extracted from kidney and mesenteric lymph node of one animal amplified a product of 423 base pairs corresponding to a target sequence within the ovine herpesvirus 2 (OVH-2) tegument protein gene. Direct sequencing of the PCR products, from extracted DNA of the kidney and mesenteric lymph node of one cow, amplified the partial nucleotide sequences (423 base pairs) of OVH-2 tegument protein gene. Blast analysis confirmed that these sequences have 98-100% identity with similar OVH-2 sequences deposited in GenBank. Phylogenetic analyses, based on the deduced amino acid sequences, demonstrated that the strain of OVH-2 circulating in ruminants from the Brazilian states of Rio Grande do Norte and Minas Gerais are similar to that identified in other geographical locations. These findings confirmed the active participation of OVH-2 in the classical manifestations of sheep associated malignant catarrhal fever.
Resumo:
The yellow fever (YF) virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed
Resumo:
It has been demonstrated that nitric oxide (NO) has a thermoregulatory action, but very little is known about the mechanisms involved. In the present study we determined the effect of neuronal nitric oxide synthase (nNOS) inhibition on thermoregulation. We used 7-nitroindazole (7-NI, 1, 10 and 30 mg/kg body weight), a selective nNOS inhibitor, injected intraperitoneally into normothermic Wistar rats (200-250 g) and rats with fever induced by lipopolysaccharide (LPS) (100 µg/kg body weight) administration. It has been demonstrated that the effects of 30 mg/kg of 7-NI given intraperitoneally may inhibit 60% of nNOS activity in rats. In all experiments the colonic temperature of awake unrestrained rats was measured over a period of 5 h at 15-min intervals after intraperitoneal injection of 7-NI. We observed that the injection of 30 mg/kg of 7-NI induced a 1.5oC drop in body temperature, which was statistically significant 1 h after injection (P<0.02). The coinjection of LPS and 7-NI was followed by a significant (P<0.02) hypothermia about 0.5oC below baseline. These findings show that an nNOS isoform is required for thermoregulation and participates in the production of fever in rats.
Resumo:
The immune and central nervous systems are functionally connected and interacting. The concept that the immune signaling to the brain which induces fever during infection and inflammation is mediated by circulating cytokines has been traditionally accepted. Administration of bacterial lipopolysaccharide (LPS) induces the appearance of a so-termed "cytokine cascade" in the circulation more or less concomitantly to the developing febrile response. Also, LPS-like fever can be induced by systemic administration of key cytokines (IL-1ß, TNF-alpha, and others). However, anti-cytokine strategies against IL-1ß or TNF-alpha along with systemic injections of LPS frequently lead to attenuation of the later stages of the febrile response but not of the initial phase of fever, indicating that cytokines are rather involved in the maintenance than in the early induction of fever. Within the last years experimental evidence has accumulated indicating the existence of neural transport pathways of immune signals to the brain. Because subdiaphragmatic vagotomy prevents or attenuates fever in response to intraperitoneal or intravenous injections of LPS, a role for vagal afferent nerve fibers in fever induction has been proposed. Also other sensory nerves may participate in the manifestation of febrile responses under certain experimental conditions. Thus, injection of a small dose of LPS into an artificial subcutaneous chamber results in fever and formation of cytokines within the inflamed tissue around the site of injection. This febrile response can be blocked in part by injection of a local anesthetic into the subcutaneous chamber, indicating a participation of cutaneous afferent nerve signals in the manifestation of fever in this model. In conclusion, humoral signals and an inflammatory stimulation of afferent sensory nerves can participate in the generation and maintenance of a febrile response.
Resumo:
A chimeric yellow fever (YF)-dengue serotype 2 (dengue 2) virus was constructed by replacing the premembrane and envelope genes of the YF 17D virus with those from dengue 2 virus strains of Southeast Asian genotype. The virus grew to high titers in Vero cells and, after passage 2, was used for immunogenicity and attenuation studies in rhesus monkeys. Subcutaneous immunization of naive rhesus monkeys with the 17D-D2 chimeric virus induced a neutralizing antibody response associated with the protection of 6 of 7 monkeys against viremia by wild-type dengue 2 virus. Neutralizing antibody titers to dengue 2 were significantly lower in YF-immune animals than in YF-naive monkeys and protection against challenge with wild-type dengue 2 virus was observed in only 2 of 11 YF-immune monkeys. An anamnestic response to dengue 2, indicated by a sharp increase of neutralizing antibody titers, was observed in the majority of the monkeys after challenge with wild-type virus. Virus attenuation was demonstrated using the standard monkey neurovirulence test. The 17D-D2 chimera caused significantly fewer histological lesions than the YF 17DD virus. The attenuated phenotype could also be inferred from the limited viremias compared to the YF 17DD vaccine. Overall, these results provide further support for the use of chimeric viruses for the development of a new live tetravalent dengue vaccine.