110 resultados para Rdna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to evaluate species level taxonomy and phylogenetic relationship among Thorea species in Brazil and other regions of the world using two molecular markers - RUBISCO large subunit plastid gene (rbcL) and nuclear small-subunit ribosomal DNA (SSU rDNA). Three samples of Thorea from Brazil (states of Mato Grosso do Sul and São Paulo) and one sample from Dominican Republic (DR) were sequenced. Analyses based on partial sequences of rbcL (1,282 bp) and complete sequences of SSU (1,752 bp) were essentially congruent and revealed that Thoreales formed a distinct monophyletic clade, which had two major branches with high support, representing the genera Thorea and Nemalionopsis. Thorea clade had four main branches with high support for all analyses, each one representing the species: 1) T. gaudichaudii C. Agardh from Asia (Japan and Philippines) - this clade occurred only in the rbcL analyses; 2) T. violacea Bory from Asia (Japan) and North America (U.S.A. and DR); 3) T. hispida (Thore) Desvaux from Europe (England) and Asia (Japan); 4) a distinct group with the three Brazilian samples (sequence identity: rbcL 97.2%, 1,246 bp; SSU 96.0-98.1%, 1,699-1,720 bp). The Brazilian samples clearly formed a monophyletic clade based on both molecular markers and was interpreted as a separate species, for which we resurrected the name T. bachmannii Pujals. Morphological and molecular evidences indicate that the Thoreales is well-resolved at ordinal and generic levels. In contrast, Thorea species recognized by molecular data require additional characters (e.g. reproductive and chromosome numbers) to allow consistent and reliable taxonomic circumscription aiming at a world revision based on molecular and morphological evidences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleolus is the cellular site of ribosome biosynthesis. At this site, active ribosomal DNA (rDNA) genes are rapidly transcribed by RNA polymerase I (pol I) molecules. Recent advances in our understanding of the pol I transcription system have indicated that regulation of ribosomal RNA (rRNA) synthesis is a critical factor in cell growth. Importantly, the same signaling networks that control cell growth and proliferation and are deregulated in cancer appear to control pol I transcription. Therefore, the study of the biochemical basis for growth regulation of pol I transcription can provide basic information about the nuclear signaling network. Hopefully, this information may facilitate the search for drugs that can inhibit the growth of tumor cells by blocking pol I activation. In addition to its function in ribosome biogenesis, recent studies have revealed the prominent role of the nucleolus in cell senescence. These findings have stimulated a new wave of research on the functional relationship between the nucleolus and aging. The aim of this review is to provide an overview of some current topics in the area of nucleolus biology, and it has been written for a general readership.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Azospirillum amazonense revealed genomic organization patterns of the nitrogen fixation genes similar to those of the distantly related species A. brasilense. Our work suggests that A. brasilense nifHDK, nifENX, fixABC operons and nifA and glnB genes may be structurally homologous to the counterpart genes of A. amazonense. This is the first analysis revealing homology between A. brasilense nif genes and the A. amazonense genome. Sequence analysis of PCR amplification products revealed similarities between the amino acid sequences of the highly conserved nifD and glnB genes of A. amazonense and related genes of A. brasilense and other bacteria. However, the A. amazonense non-coding regions (the upstream activator sequence region and the region between the nifH and nifD genes) differed from related regions of A. brasilense even in nitrogenase structural genes which are highly conserved among diazotrophic bacteria. The feasibility of the 16S ribosomal RNA gene-based PCR system for specific detection of A. amazonense was shown. Our results indicate that the PCR primers for 16S rDNA defined in this article are highly specific to A. amazonense and can distinguish this species from A. brasilense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaf-cutting ants of the genera Atta and Acromyrmex (tribe Attini) are symbiotic with basidiomycete fungi of the genus Leucoagaricus (tribe Leucocoprineae), which they cultivate on vegetable matter inside their nests. We determined the variation of the 28S, 18S, and 5.8S ribosomal DNA (rDNA) gene loci and the rapidly evolving internal transcribed spacers 1 and 2 (ITS1 and ITS2) of 15 sympatric and allopatric fungi associated with colonies of 11 species of leafcutter ants living up to 2,600 km apart in Brazil. We found that the fungal rDNA and ITS sequences from different species of ants were identical (or nearly identical) to each other, whereas 10 GenBank Leucoagaricus species showed higher ITS variation. Our findings suggest that Atta and Acromyrmex leafcutters living in geographic sites that are very distant from each other cultivate a single fungal species made up of closely related lineages of Leucoagaricus gongylophorus. We discuss the strikingly high similarity in the ITS1 and ITS2 regions of the Atta and Acromyrmex symbiotic L. gongylophorus studied by us, in contrast to the lower similarity displayed by their non-symbiotic counterparts. We suggest that the similarity of our L. gongylophorus isolates is an indication of the recent association of the fungus with these ants, and propose that both the intense lateral transmission of fungal material within leafcutter nests and the selection of more adapted fungal strains are involved in the homogenization of the symbiotic fungal stock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron is an essential element for nearly all living organisms, and its deficiency is the most common form of malnutrition in the world. The organic forms of trace elements are considered more bioavailable than the inorganic forms. Although Saccharomyces cerevisiae can enrich metal elements and convert inorganic iron to organic species, its tolerability and transforming capacity are limited. The aim of this study was to screen higher biomass and other iron-enriched fungi strains besides Saccharomyces cerevisiae from the natural environment. A PDA medium containing 800 μg/mL iron was used for initial screening. Fifty strains that tolerated high iron concentration were isolated from the natural environment, and only one strain, No.BY1109, grew well at Fe (II) concentration of 10,000μg/ml. According to morphological characterization, 18S rDNA sequence analysis, and biophysical and biochemical characterization, the strain No.BY1109 was identified as Rhodotorula. The iron content of No.BY1109 (10 mg Fe/g dry cell) was determined using atomic absorption spectrometry. The results of distribution of iron in the cells showed that iron ion was mainly chelated in the cell walls and vacuoles. The bioavailability in rats confirmed that strain No.BY1109 had higher absorption efficiency than that of ferrous sulfate after single dose oral administration. The present study introduces new iron supplements, and it is a basis for finding new iron supplements from natural environment.